ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralv Structured version   Unicode version

Theorem ceqsralv 2579
Description: Restricted quantifier version of ceqsalv 2578. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2
Assertion
Ref Expression
ceqsralv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1418 . 2  F/
2 ceqsralv.2 . . 3
32ax-gen 1335 . 2
4 ceqsralt 2575 . 2  F/
51, 3, 4mp3an12 1221 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98  wal 1240   wceq 1242   F/wnf 1346   wcel 1390  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-ral 2305  df-v 2553
This theorem is referenced by:  eqreu  2727
  Copyright terms: Public domain W3C validator