Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralv Unicode version

Theorem ceqsralv 2585
 Description: Restricted quantifier version of ceqsalv 2584. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2
Assertion
Ref Expression
ceqsralv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1421 . 2
2 ceqsralv.2 . . 3
32ax-gen 1338 . 2
4 ceqsralt 2581 . 2
51, 3, 4mp3an12 1222 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1241   wceq 1243  wnf 1349   wcel 1393  wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-v 2559 This theorem is referenced by:  eqreu  2733  sqrt2irr  9878
 Copyright terms: Public domain W3C validator