Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo Unicode version

Theorem bdrmo 9976
 Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1 BOUNDED
Assertion
Ref Expression
bdrmo BOUNDED
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4 BOUNDED
21ax-bdex 9939 . . 3 BOUNDED
31bdreu 9975 . . 3 BOUNDED
42, 3ax-bdim 9934 . 2 BOUNDED
5 rmo5 2525 . 2
64, 5bd0r 9945 1 BOUNDED
 Colors of variables: wff set class Syntax hints:   wi 4  wrex 2307  wreu 2308  wrmo 2309  BOUNDED wbd 9932 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bd0 9933  ax-bdim 9934  ax-bdan 9935  ax-bdal 9938  ax-bdex 9939  ax-bdeq 9940 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-cleq 2033  df-clel 2036  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator