Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu Unicode version

Theorem bdreu 9975
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula  A. x  e.  A ph need not be bounded even if 
A and  ph are. Indeed,  _V is bounded by bdcvv 9977, and  |-  ( A. x  e. 
_V ph  <->  A. x ph ) (in minimal propositional calculus), so by bd0 9944, if  A. x  e. 
_V ph were bounded when  ph is bounded, then  A. x ph would be bounded as well when  ph is bounded, which is not the case. The same remark holds with  E. ,  E! ,  E*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1  |- BOUNDED  ph
Assertion
Ref Expression
bdreu  |- BOUNDED  E! x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdreu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4  |- BOUNDED  ph
21ax-bdex 9939 . . 3  |- BOUNDED  E. x  e.  y 
ph
3 ax-bdeq 9940 . . . . . 6  |- BOUNDED  x  =  z
41, 3ax-bdim 9934 . . . . 5  |- BOUNDED  ( ph  ->  x  =  z )
54ax-bdal 9938 . . . 4  |- BOUNDED  A. x  e.  y  ( ph  ->  x  =  z )
65ax-bdex 9939 . . 3  |- BOUNDED  E. z  e.  y 
A. x  e.  y  ( ph  ->  x  =  z )
72, 6ax-bdan 9935 . 2  |- BOUNDED  ( E. x  e.  y  ph  /\  E. z  e.  y  A. x  e.  y  ( ph  ->  x  =  z ) )
8 reu3 2731 . 2  |-  ( E! x  e.  y  ph  <->  ( E. x  e.  y 
ph  /\  E. z  e.  y  A. x  e.  y  ( ph  ->  x  =  z ) ) )
97, 8bd0r 9945 1  |- BOUNDED  E! x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wral 2306   E.wrex 2307   E!wreu 2308  BOUNDED wbd 9932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bd0 9933  ax-bdim 9934  ax-bdan 9935  ax-bdal 9938  ax-bdex 9939  ax-bdeq 9940
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-cleq 2033  df-clel 2036  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314
This theorem is referenced by:  bdrmo  9976
  Copyright terms: Public domain W3C validator