ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi1dv Unicode version

Theorem abbi1dv 2157
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbildv.1  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
Assertion
Ref Expression
abbi1dv  |-  ( ph  ->  { x  |  ps }  =  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbildv.1 . . 3  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
21alrimiv 1754 . 2  |-  ( ph  ->  A. x ( ps  <->  x  e.  A ) )
3 abeq1 2147 . 2  |-  ( { x  |  ps }  =  A  <->  A. x ( ps  <->  x  e.  A ) )
42, 3sylibr 137 1  |-  ( ph  ->  { x  |  ps }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036
This theorem is referenced by:  abidnf  2709  csbtt  2862  csbvarg  2877  csbie2g  2896  abvor0dc  3242  iinxsng  3730  shftuz  9418
  Copyright terms: Public domain W3C validator