Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbi1dv | Unicode version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
abbildv.1 |
Ref | Expression |
---|---|
abbi1dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbildv.1 | . . 3 | |
2 | 1 | alrimiv 1754 | . 2 |
3 | abeq1 2147 | . 2 | |
4 | 2, 3 | sylibr 137 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wceq 1243 wcel 1393 cab 2026 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: abidnf 2709 csbtt 2862 csbvarg 2877 csbie2g 2896 abvor0dc 3242 iinxsng 3730 shftuz 9418 |
Copyright terms: Public domain | W3C validator |