MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanatan Structured version   Visualization version   GIF version

Theorem tanatan 24446
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
tanatan (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)

Proof of Theorem tanatan
StepHypRef Expression
1 atancl 24408 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 2efiatan 24445 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
32oveq1d 6564 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((((2 · i) / (𝐴 + i)) − 1) + 1))
4 2mulicn 11132 . . . . . . . 8 (2 · i) ∈ ℂ
54a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6 atandm 24403 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
76simp1bi 1069 . . . . . . . 8 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
8 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
9 addcl 9897 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
107, 8, 9sylancl 693 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
11 subneg 10209 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
127, 8, 11sylancl 693 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
136simp2bi 1070 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
148negcli 10228 . . . . . . . . . 10 -i ∈ ℂ
15 subeq0 10186 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
1615necon3bid 2826 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
177, 14, 16sylancl 693 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
1813, 17mpbird 246 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
1912, 18eqnetrrd 2850 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
205, 10, 19divcld 10680 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ∈ ℂ)
21 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
22 npcan 10169 . . . . . 6 ((((2 · i) / (𝐴 + i)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
2320, 21, 22sylancl 693 . . . . 5 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
243, 23eqtrd 2644 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((2 · i) / (𝐴 + i)))
25 2muline0 11133 . . . . . 6 (2 · i) ≠ 0
2625a1i 11 . . . . 5 (𝐴 ∈ dom arctan → (2 · i) ≠ 0)
275, 10, 26, 19divne0d 10696 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ≠ 0)
2824, 27eqnetrd 2849 . . 3 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0)
29 tanval3 14703 . . 3 (((arctan‘𝐴) ∈ ℂ ∧ ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0) → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
301, 28, 29syl2anc 691 . 2 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
312oveq1d 6564 . . . . . 6 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((((2 · i) / (𝐴 + i)) − 1) − 1))
3221a1i 11 . . . . . . . 8 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
3320, 32, 32subsub4d 10302 . . . . . . 7 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − (1 + 1)))
34 df-2 10956 . . . . . . . 8 2 = (1 + 1)
3534oveq2i 6560 . . . . . . 7 (((2 · i) / (𝐴 + i)) − 2) = (((2 · i) / (𝐴 + i)) − (1 + 1))
3633, 35syl6eqr 2662 . . . . . 6 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − 2))
3731, 36eqtrd 2644 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = (((2 · i) / (𝐴 + i)) − 2))
38 2cn 10968 . . . . . . . 8 2 ∈ ℂ
39 mulcl 9899 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (2 · (𝐴 + i)) ∈ ℂ)
4038, 10, 39sylancr 694 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · (𝐴 + i)) ∈ ℂ)
415, 40, 10, 19divsubdird 10719 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))))
42 mulneg12 10347 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) = (2 · -𝐴))
4338, 7, 42sylancr 694 . . . . . . . 8 (𝐴 ∈ dom arctan → (-2 · 𝐴) = (2 · -𝐴))
44 negsub 10208 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
458, 7, 44sylancr 694 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
4645oveq1d 6564 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = ((i − 𝐴) − i))
477negcld 10258 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -𝐴 ∈ ℂ)
48 pncan2 10167 . . . . . . . . . . 11 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((i + -𝐴) − i) = -𝐴)
498, 47, 48sylancr 694 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = -𝐴)
508a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → i ∈ ℂ)
5150, 7, 50subsub4d 10302 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i − 𝐴) − i) = (i − (𝐴 + i)))
5246, 49, 513eqtr3rd 2653 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i − (𝐴 + i)) = -𝐴)
5352oveq2d 6565 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = (2 · -𝐴))
5438a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5554, 50, 10subdid 10365 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = ((2 · i) − (2 · (𝐴 + i))))
5643, 53, 553eqtr2rd 2651 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · i) − (2 · (𝐴 + i))) = (-2 · 𝐴))
5756oveq1d 6564 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = ((-2 · 𝐴) / (𝐴 + i)))
5854, 10, 19divcan4d 10686 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · (𝐴 + i)) / (𝐴 + i)) = 2)
5958oveq2d 6565 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 2))
6041, 57, 593eqtr3d 2652 . . . . 5 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − 2))
6137, 60eqtr4d 2647 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((-2 · 𝐴) / (𝐴 + i)))
6224oveq2d 6565 . . . . 5 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (i · ((2 · i) / (𝐴 + i))))
638, 38, 8mul12i 10110 . . . . . . . 8 (i · (2 · i)) = (2 · (i · i))
64 ixi 10535 . . . . . . . . 9 (i · i) = -1
6564oveq2i 6560 . . . . . . . 8 (2 · (i · i)) = (2 · -1)
6621negcli 10228 . . . . . . . . 9 -1 ∈ ℂ
6738mulm1i 10354 . . . . . . . . 9 (-1 · 2) = -2
6866, 38, 67mulcomli 9926 . . . . . . . 8 (2 · -1) = -2
6963, 65, 683eqtri 2636 . . . . . . 7 (i · (2 · i)) = -2
7069oveq1i 6559 . . . . . 6 ((i · (2 · i)) / (𝐴 + i)) = (-2 / (𝐴 + i))
7150, 5, 10, 19divassd 10715 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (2 · i)) / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7270, 71syl5eqr 2658 . . . . 5 (𝐴 ∈ dom arctan → (-2 / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7362, 72eqtr4d 2647 . . . 4 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (-2 / (𝐴 + i)))
7461, 73oveq12d 6567 . . 3 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))))
7538negcli 10228 . . . . . 6 -2 ∈ ℂ
76 mulcl 9899 . . . . . 6 ((-2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) ∈ ℂ)
7775, 7, 76sylancr 694 . . . . 5 (𝐴 ∈ dom arctan → (-2 · 𝐴) ∈ ℂ)
7875a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ∈ ℂ)
79 2ne0 10990 . . . . . . 7 2 ≠ 0
8038, 79negne0i 10235 . . . . . 6 -2 ≠ 0
8180a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ≠ 0)
8277, 78, 10, 81, 19divcan7d 10708 . . . 4 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = ((-2 · 𝐴) / -2))
837, 78, 81divcan3d 10685 . . . 4 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / -2) = 𝐴)
8482, 83eqtrd 2644 . . 3 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = 𝐴)
8574, 84eqtrd 2644 . 2 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = 𝐴)
8630, 85eqtrd 2644 1 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  expce 14631  tanctan 14635  arctancatan 24391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-atan 24394
This theorem is referenced by:  atantanb  24451  atanord  24454
  Copyright terms: Public domain W3C validator