MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2lem Structured version   Visualization version   GIF version

Theorem ovollb2lem 23063
Description: Lemma for ovollb2 23064. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovollb2.2 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
ovollb2.3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ovollb2.4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovollb2.5 (𝜑𝐴 ran ([,] ∘ 𝐹))
ovollb2.6 (𝜑𝐵 ∈ ℝ+)
ovollb2.7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
Assertion
Ref Expression
ovollb2lem (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝐵,𝑛   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovollb2lem
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovollb2.5 . . . 4 (𝜑𝐴 ran ([,] ∘ 𝐹))
2 ovollb2.4 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolficcss 23045 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
42, 3syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
51, 4sstrd 3578 . . 3 (𝜑𝐴 ⊆ ℝ)
6 ovolcl 23053 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
75, 6syl 17 . 2 (𝜑 → (vol*‘𝐴) ∈ ℝ*)
8 ovolfcl 23042 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
92, 8sylan 487 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
109simp1d 1066 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
11 ovollb2.6 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ+)
1211rphalfcld 11760 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 2) ∈ ℝ+)
1312adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
14 2nn 11062 . . . . . . . . . . . . . . 15 2 ∈ ℕ
15 nnnn0 11176 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 nnexpcl 12735 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1814, 16, 17sylancr 694 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
1918nnrpd 11746 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
2013, 19rpdivcld 11765 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ+)
2120rpred 11748 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ)
2210, 21resubcld 10337 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
239simp2d 1067 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2423, 21readdcld 9948 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
2510, 20ltsubrpd 11780 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
269simp3d 1068 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2723, 20ltaddrpd 11781 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2810, 23, 24, 26, 27lelttrd 10074 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2922, 10, 24, 25, 28lttrd 10077 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
3022, 24, 29ltled 10064 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
31 df-br 4584 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3230, 31sylib 207 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
33 opelxpi 5072 . . . . . . . . 9 ((((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ ∧ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ (ℝ × ℝ))
3422, 24, 33syl2anc 691 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ (ℝ × ℝ))
3532, 34elind 3760 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
36 ovollb2.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
3735, 36fmptd 6292 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
38 eqid 2610 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
39 ovollb2.3 . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
4038, 39ovolsf 23048 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
4137, 40syl 17 . . . . 5 (𝜑𝑇:ℕ⟶(0[,)+∞))
42 frn 5966 . . . . 5 (𝑇:ℕ⟶(0[,)+∞) → ran 𝑇 ⊆ (0[,)+∞))
4341, 42syl 17 . . . 4 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
44 icossxr 12129 . . . 4 (0[,)+∞) ⊆ ℝ*
4543, 44syl6ss 3580 . . 3 (𝜑 → ran 𝑇 ⊆ ℝ*)
46 supxrcl 12017 . . 3 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
4745, 46syl 17 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
48 ovollb2.7 . . . 4 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4911rpred 11748 . . . 4 (𝜑𝐵 ∈ ℝ)
5048, 49readdcld 9948 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ)
5150rexrd 9968 . 2 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
52 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
5352fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (1st ‘(𝐹𝑛)) = (1st ‘(𝐹𝑚)))
54 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5554oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚)))
5653, 55oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
5752fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐹𝑚)))
5857, 55oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
5956, 58opeq12d 4348 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
60 opex 4859 . . . . . . . . . . . . . . 15 ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩ ∈ V
6159, 36, 60fvmpt 6191 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
6261adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
6362fveq2d 6107 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
64 ovex 6577 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V
65 ovex 6577 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V
6664, 65op1st 7067 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))
6763, 66syl6eq 2660 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
68 ovolfcl 23042 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
692, 68sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
7069simp1d 1066 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
7112adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
72 nnnn0 11176 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
7372adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
74 nnexpcl 12735 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
7514, 73, 74sylancr 694 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℕ)
7675nnrpd 11746 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ+)
7771, 76rpdivcld 11765 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℝ+)
7870, 77ltsubrpd 11780 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹𝑚)))
7967, 78eqbrtrd 4605 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
8079adantlr 747 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
81 ovolfcl 23042 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
8237, 81sylan 487 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
8382simp1d 1066 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8483adantlr 747 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8570adantlr 747 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
865sselda 3568 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
8786adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ)
88 ltletr 10008 . . . . . . . . . 10 (((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8984, 85, 87, 88syl3anc 1318 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
9080, 89mpand 707 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ≤ 𝑧 → (1st ‘(𝐺𝑚)) < 𝑧))
9169simp2d 1067 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
9291, 77ltaddrpd 11781 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9362fveq2d 6107 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
9464, 65op2nd 7068 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))
9593, 94syl6eq 2660 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9692, 95breqtrrd 4611 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9796adantlr 747 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9891adantlr 747 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
9982simp2d 1067 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
10099adantlr 747 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
101 lelttr 10007 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
10287, 98, 100, 101syl3anc 1318 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
10397, 102mpan2d 706 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹𝑚)) → 𝑧 < (2nd ‘(𝐺𝑚))))
10490, 103anim12d 584 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
105104reximdva 3000 . . . . . 6 ((𝜑𝑧𝐴) → (∃𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
106105ralimdva 2945 . . . . 5 (𝜑 → (∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
107 ovolficc 23044 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
1085, 2, 107syl2anc 691 . . . . 5 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
109 ovolfioo 23043 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
1105, 37, 109syl2anc 691 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
111106, 108, 1103imtr4d 282 . . . 4 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) → 𝐴 ran ((,) ∘ 𝐺)))
1121, 111mpd 15 . . 3 (𝜑𝐴 ran ((,) ∘ 𝐺))
11339ovollb 23054 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐺)) → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11437, 112, 113syl2anc 691 . 2 (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11539fveq1i 6104 . . . . . . 7 (𝑇𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘)
116 fzfid 12634 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
117 rge0ssre 12151 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
118 eqid 2610 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
119118ovolfsf 23047 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
1202, 119syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
121120adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
122 elfznn 12241 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
123 ffvelrn 6265 . . . . . . . . . . . 12 ((((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
124121, 122, 123syl2an 493 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
125117, 124sseldi 3566 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℝ)
126125recnd 9947 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℂ)
12711adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℝ+)
128127, 76rpdivcld 11765 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℝ+)
129128rpcnd 11750 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ)
130122, 129sylan2 490 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
131130adantlr 747 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
132116, 126, 131fsumadd 14317 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))))
13338ovolfsval 23046 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13437, 133sylan 487 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13591recnd 9947 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℂ)
13677rpcnd 11750 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ)
13770recnd 9947 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℂ)
138137, 136subcld 10271 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ)
139135, 136, 138addsubassd 10291 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
14095, 67oveq12d 6567 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))
141135, 137, 129subadd23d 10293 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
142118ovolfsval 23046 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
1432, 142sylan 487 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
144143oveq1d 6564 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))))
145136, 137, 136subsub3d 10301 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))))
14671rpcnd 11750 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ)
14775nncnd 10913 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
14875nnne0d 10942 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0)
149146, 146, 147, 148divdird 10718 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
150127rpcnd 11750 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℂ)
1511502halvesd 11155 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵)
152151oveq1d 6564 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚)))
153149, 152eqtr3d 2646 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚)))
154153oveq1d 6564 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
155145, 154eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
156155oveq2d 6565 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
157141, 144, 1563eqtr4d 2654 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
158139, 140, 1573eqtr4d 2654 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
159134, 158eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
160122, 159sylan2 490 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
161160adantlr 747 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
162 simpr 476 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
163 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
164162, 163syl6eleq 2698 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
165126, 131addcld 9938 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ)
166161, 164, 165fsumser 14308 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
167 eqidd 2611 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚))
168167, 164, 126fsumser 14308 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
169 ovollb2.1 . . . . . . . . . . 11 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
170169fveq1i 6104 . . . . . . . . . 10 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
171168, 170syl6eqr 2662 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆𝑘))
17211adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ+)
173172rpcnd 11750 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
174 geo2sum 14443 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
175162, 173, 174syl2anc 691 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
176171, 175oveq12d 6567 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
177132, 166, 1763eqtr3d 2652 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
178115, 177syl5eq 2656 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
179118, 169ovolsf 23048 . . . . . . . . . 10 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1802, 179syl 17 . . . . . . . . 9 (𝜑𝑆:ℕ⟶(0[,)+∞))
181180ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ (0[,)+∞))
182117, 181sseldi 3566 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
183172rpred 11748 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
184 nnnn0 11176 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
185184adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
186 nnexpcl 12735 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
18714, 185, 186sylancr 694 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℕ)
188187nnrpd 11746 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℝ+)
189172, 188rpdivcld 11765 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ+)
190189rpred 11748 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ)
191183, 190resubcld 10337 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ)
19248adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
193 frn 5966 . . . . . . . . . . 11 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
194180, 193syl 17 . . . . . . . . . 10 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
195194, 44syl6ss 3580 . . . . . . . . 9 (𝜑 → ran 𝑆 ⊆ ℝ*)
196195adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
197 ffn 5958 . . . . . . . . . 10 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
198180, 197syl 17 . . . . . . . . 9 (𝜑𝑆 Fn ℕ)
199 fnfvelrn 6264 . . . . . . . . 9 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
200198, 199sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
201 supxrub 12026 . . . . . . . 8 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
202196, 200, 201syl2anc 691 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
203183, 189ltsubrpd 11780 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵)
204191, 183, 203ltled 10064 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵)
205182, 191, 192, 183, 202, 204le2addd 10525 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
206178, 205eqbrtrd 4605 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
207206ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
208 ffn 5958 . . . . 5 (𝑇:ℕ⟶(0[,)+∞) → 𝑇 Fn ℕ)
209 breq1 4586 . . . . . 6 (𝑦 = (𝑇𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
210209ralrn 6270 . . . . 5 (𝑇 Fn ℕ → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
21141, 208, 2103syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
212207, 211mpbird 246 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
213 supxrleub 12028 . . . 4 ((ran 𝑇 ⊆ ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
21445, 51, 213syl2anc 691 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
215212, 214mpbird 246 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
2167, 47, 51, 114, 215xrletrd 11869 1 (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540  cop 4131   cuni 4372   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cuz 11563  +crp 11708  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  ...cfz 12197  seqcseq 12663  cexp 12722  abscabs 13822  Σcsu 14264  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-ovol 23040
This theorem is referenced by:  ovollb2  23064
  Copyright terms: Public domain W3C validator