MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumadd Structured version   Visualization version   GIF version

Theorem fsumadd 14317
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1 (𝜑𝐴 ∈ Fin)
fsumadd.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumadd.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumadd (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumadd
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 10090 . . . . 5 (0 + 0) = 0
2 sum0 14299 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
3 sum0 14299 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
42, 3oveq12i 6561 . . . . 5 𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0)
5 sum0 14299 . . . . 5 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = 0
61, 4, 53eqtr4ri 2643 . . . 4 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)
7 sumeq1 14267 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶))
8 sumeq1 14267 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
9 sumeq1 14267 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 6567 . . . 4 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2670 . . 3 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
1211a1i 11 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
13 simprl 790 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
14 nnuz 11599 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14syl6eleq 2698 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ (ℤ‘1))
16 fsumadd.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1716adantlr 747 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
18 eqid 2610 . . . . . . . . . . 11 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1917, 18fmptd 6292 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
20 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
21 f1of 6050 . . . . . . . . . . 11 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
2220, 21syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴)
23 fco 5971 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2419, 22, 23syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2524ffvelrnda 6267 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
26 fsumadd.3 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2726adantlr 747 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
28 eqid 2610 . . . . . . . . . . 11 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2927, 28fmptd 6292 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
30 fco 5971 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
3129, 22, 30syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
3231ffvelrnda 6267 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
3322ffvelrnda 6267 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
34 ovex 6577 . . . . . . . . . . . . . . 15 (𝐵 + 𝐶) ∈ V
35 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑘𝐴 ↦ (𝐵 + 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶))
3635fvmpt2 6200 . . . . . . . . . . . . . . 15 ((𝑘𝐴 ∧ (𝐵 + 𝐶) ∈ V) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
3734, 36mpan2 703 . . . . . . . . . . . . . 14 (𝑘𝐴 → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
3837adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
39 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑘𝐴)
4018fvmpt2 6200 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4139, 16, 40syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4228fvmpt2 6200 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4339, 26, 42syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4441, 43oveq12d 6567 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 + 𝐶))
4538, 44eqtr4d 2647 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
4645ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
4746ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
48 nffvmpt1 6111 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛))
49 nffvmpt1 6111 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
50 nfcv 2751 . . . . . . . . . . . . 13 𝑘 +
51 nffvmpt1 6111 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
5249, 50, 51nfov 6575 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5348, 52nfeq 2762 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
54 fveq2 6103 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
55 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
56 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5755, 56oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
5854, 57eqeq12d 2625 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
5953, 58rspc 3276 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
6033, 47, 59sylc 63 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
61 fvco3 6185 . . . . . . . . . 10 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
6222, 61sylan 487 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
63 fvco3 6185 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6422, 63sylan 487 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
65 fvco3 6185 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6622, 65sylan 487 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6764, 66oveq12d 6567 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
6860, 62, 673eqtr4d 2654 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
6915, 25, 32, 68seradd 12705 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (seq1( + , ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(#‘𝐴)) = ((seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)) + (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(#‘𝐴))))
70 fveq2 6103 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
7117, 27addcld 9938 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
7271, 35fmptd 6292 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
7372ffvelrnda 6267 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ)
7470, 13, 20, 73, 62fsum 14298 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(#‘𝐴)))
75 fveq2 6103 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7619ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7775, 13, 20, 76, 64fsum 14298 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
78 fveq2 6103 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
7929ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
8078, 13, 20, 79, 66fsum 14298 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(#‘𝐴)))
8177, 80oveq12d 6567 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)) + (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(#‘𝐴))))
8269, 74, 813eqtr4d 2654 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
83 sumfc 14287 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶)
84 sumfc 14287 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
85 sumfc 14287 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
8684, 85oveq12i 6561 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)
8782, 83, 863eqtr3g 2667 . . . . 5 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
8887expr 641 . . . 4 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
8988exlimdv 1848 . . 3 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
9089expimpd 627 . 2 (𝜑 → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
91 fsumadd.1 . . 3 (𝜑𝐴 ∈ Fin)
92 fz1f1o 14288 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
9391, 92syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
9412, 90, 93mpjaod 395 1 (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  Vcvv 3173  c0 3874  cmpt 4643  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cn 10897  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  fsumsplit  14318  fsumsub  14362  binomlem  14400  binomfallfaclem2  14610  pwp1fsum  14952  pcbc  15442  csbren  22990  trirn  22991  ovollb2lem  23063  ovoliunlem1  23077  itg1addlem5  23273  itgsplit  23408  plyaddlem1  23773  basellem8  24614  logfaclbnd  24747  dchrvmasum2if  24986  mudivsum  25019  logsqvma  25031  selberglem1  25034  selberglem2  25035  selberg  25037  selberg2  25040  selberg3lem1  25046  selberg4  25050  pntsval2  25065  ax5seglem9  25617  dvnmul  38833  dirkertrigeqlem2  38992  sge0xaddlem1  39326  sge0xaddlem2  39327  hoidmvlelem2  39486  altgsumbcALT  41924
  Copyright terms: Public domain W3C validator