MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem1 Structured version   Visualization version   GIF version

Theorem selberg3lem1 25046
Description: Introduce a log weighting on the summands of Σ𝑚 · 𝑛𝑥, Λ(𝑚)Λ(𝑛), the core of selberg2 25040 (written here as Σ𝑛𝑥, Λ(𝑛)ψ(𝑥 / 𝑛)). Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
selberg3lem1.1 (𝜑𝐴 ∈ ℝ+)
selberg3lem1.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
Assertion
Ref Expression
selberg3lem1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)

Proof of Theorem selberg3lem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1red 9934 . 2 (𝜑 → 1 ∈ ℝ)
2 ioossre 12106 . . . 4 (1(,)+∞) ⊆ ℝ
3 selberg3lem1.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
43rpcnd 11750 . . . 4 (𝜑𝐴 ∈ ℂ)
5 o1const 14198 . . . 4 (((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
62, 4, 5sylancr 694 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
7 fzfid 12634 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
8 elfznn 12241 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
98adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
10 vmacl 24644 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1211, 9nndivred 10946 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
137, 12fsumrecl 14312 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
14 elioore 12076 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
15 eliooord 12104 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1615simpld 474 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
1714, 16rplogcld 24179 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
18 rpdivcl 11732 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (log‘𝑥) ∈ ℝ+) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
193, 17, 18syl2an 493 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
2019rpred 11748 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ)
2113, 20remulcld 9949 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℝ)
2221recnd 9947 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℂ)
234adantr 480 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℂ)
2413recnd 9947 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
2517adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2625rpcnd 11750 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2719rpcnd 11750 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℂ)
2824, 26, 27subdird 10366 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))))
2925rpne0d 11753 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
3023, 26, 29divcan2d 10682 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) · (𝐴 / (log‘𝑥))) = 𝐴)
3130oveq2d 6565 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))
3228, 31eqtrd 2644 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))
3332mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)))
3425rpred 11748 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
3513, 34resubcld 10337 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
3614adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
37 0red 9920 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ∈ ℝ)
38 1red 9934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
39 0lt1 10429 . . . . . . . . . . . 12 0 < 1
4039a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 < 1)
4116adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
4237, 38, 36, 40, 41lttrd 10077 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 < 𝑥)
4336, 42elrpd 11745 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
4443ex 449 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4544ssrdv 3574 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ+)
46 vmadivsum 24971 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
4746a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
4845, 47o1res2 14142 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
492a1i 11 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ)
50 ere 14658 . . . . . . . 8 e ∈ ℝ
5150a1i 11 . . . . . . 7 (𝜑 → e ∈ ℝ)
523rpred 11748 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5319adantrr 749 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
5453rprege0d 11755 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))))
55 absid 13884 . . . . . . . . 9 (((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥)))
5654, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥)))
57 loge 24137 . . . . . . . . . . 11 (log‘e) = 1
58 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → e ≤ 𝑥)
59 epr 14775 . . . . . . . . . . . . 13 e ∈ ℝ+
6043adantrr 749 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝑥 ∈ ℝ+)
61 logleb 24153 . . . . . . . . . . . . 13 ((e ∈ ℝ+𝑥 ∈ ℝ+) → (e ≤ 𝑥 ↔ (log‘e) ≤ (log‘𝑥)))
6259, 60, 61sylancr 694 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (e ≤ 𝑥 ↔ (log‘e) ≤ (log‘𝑥)))
6358, 62mpbid 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘e) ≤ (log‘𝑥))
6457, 63syl5eqbrr 4619 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 1 ≤ (log‘𝑥))
65 1rp 11712 . . . . . . . . . . . 12 1 ∈ ℝ+
66 rpregt0 11722 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
6765, 66mp1i 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ∈ ℝ ∧ 0 < 1))
6825adantrr 749 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘𝑥) ∈ ℝ+)
6968rpregt0d 11754 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((log‘𝑥) ∈ ℝ ∧ 0 < (log‘𝑥)))
703adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℝ+)
7170rpregt0d 11754 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
72 lediv2 10792 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘𝑥) ∈ ℝ ∧ 0 < (log‘𝑥)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)))
7367, 69, 71, 72syl3anc 1318 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ≤ (log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)))
7464, 73mpbid 221 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1))
754adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℂ)
7675div1d 10672 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / 1) = 𝐴)
7774, 76breqtrd 4609 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ 𝐴)
7856, 77eqbrtrd 4605 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) ≤ 𝐴)
7949, 27, 51, 52, 78elo1d 14115 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 / (log‘𝑥))) ∈ 𝑂(1))
8035, 20, 48, 79o1mul2 14203 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1))
8133, 80eqeltrrd 2689 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)) ∈ 𝑂(1))
8222, 23, 81o1dif 14208 . . 3 (𝜑 → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1)))
836, 82mpbird 246 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1))
84 2re 10967 . . . . . . 7 2 ∈ ℝ
85 rerpdivcl 11737 . . . . . . 7 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ+) → (2 / (log‘𝑥)) ∈ ℝ)
8684, 25, 85sylancr 694 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
87 nndivre 10933 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
8836, 8, 87syl2an 493 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
89 chpcl 24650 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
9088, 89syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
9111, 90remulcld 9949 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
929nnrpd 11746 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
9392relogcld 24173 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
9491, 93remulcld 9949 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
957, 94fsumrecl 14312 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
9686, 95remulcld 9949 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
977, 91fsumrecl 14312 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
9896, 97resubcld 10337 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
9998, 43rerpdivcld 11779 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
10099recnd 9947 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
101100abscld 14023 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ℝ)
10222abscld 14023 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ ℝ)
103 2cnd 10970 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
10495recnd 9947 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
105103, 104mulcld 9939 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
10697recnd 9947 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
107106, 26mulcld 9939 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ)
108105, 107subcld 10271 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) ∈ ℂ)
109108abscld 14023 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℝ)
11042gt0ne0d 10471 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
111109, 36, 110redivcld 10732 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ∈ ℝ)
11252adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
11313, 112remulcld 9949 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ∈ ℝ)
11411recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
115 fzfid 12634 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
116 elfznn 12241 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
117116adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
118 vmacl 24644 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℝ)
120117nnrpd 11746 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
121120relogcld 24173 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
122119, 121remulcld 9949 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
123115, 122fsumrecl 14312 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
1248nnrpd 11746 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
125 rpdivcl 11732 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
12643, 124, 125syl2an 493 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
127126relogcld 24173 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
12890, 127remulcld 9949 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
129123, 128resubcld 10337 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
130129recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
131114, 130mulcld 9939 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
1327, 131fsumcl 14311 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
133132abscld 14023 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
134131abscld 14023 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
1357, 134fsumrecl 14312 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
136112, 36remulcld 9949 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℝ)
13713, 136remulcld 9949 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ)
1387, 131fsumabs 14374 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
13952ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
14036adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
141139, 140remulcld 9949 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑥) ∈ ℝ)
14212, 141remulcld 9949 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ)
143130abscld 14023 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℝ)
144141, 9nndivred 10946 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑥) / 𝑛) ∈ ℝ)
145 vmage0 24647 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
1469, 145syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
14788recnd 9947 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
148126rpne0d 11753 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
149130, 147, 148absdivd 14042 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))))
150126rpge0d 11752 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
15188, 150absidd 14009 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
152151oveq2d 6565 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)))
153149, 152eqtrd 2644 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)))
1549nncnd 10913 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
155154mulid2d 9937 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
156 fznnfl 12523 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
15736, 156syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
158157simplbda 652 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
159155, 158eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
160 1red 9934 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
161160, 140, 92lemuldivd 11797 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
162159, 161mpbid 221 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
163 1re 9918 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
164 elicopnf 12140 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛))))
165163, 164ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)))
16688, 162, 165sylanbrc 695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ (1[,)+∞))
167 selberg3lem1.2 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
168167ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
169 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
170 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
171169, 170oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
172171cbvsumv 14274 . . . . . . . . . . . . . . . . . . . . . . 23 Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))
173 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 / 𝑛) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑛)))
174173oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 / 𝑛) → (1...(⌊‘𝑦)) = (1...(⌊‘(𝑥 / 𝑛))))
175174sumeq1d 14279 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 / 𝑛) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))
176172, 175syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))
177 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 / 𝑛) → (ψ‘𝑦) = (ψ‘(𝑥 / 𝑛)))
178 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 / 𝑛) → (log‘𝑦) = (log‘(𝑥 / 𝑛)))
179177, 178oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → ((ψ‘𝑦) · (log‘𝑦)) = ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))
180176, 179oveq12d 6567 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / 𝑛) → (Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))
181 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
182180, 181oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / 𝑛) → ((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛)))
183182fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → (abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))))
184183breq1d 4593 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → ((abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴 ↔ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴))
185184rspcv 3278 . . . . . . . . . . . . . . . . 17 ((𝑥 / 𝑛) ∈ (1[,)+∞) → (∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴 → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴))
186166, 168, 185sylc 63 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴)
187153, 186eqbrtrrd 4607 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴)
188143, 139, 126ledivmul2d 11802 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴 ↔ (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛))))
189187, 188mpbid 221 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛)))
19023adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
191140recnd 9947 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
1929nnne0d 10942 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
193190, 191, 154, 192divassd 10715 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑥) / 𝑛) = (𝐴 · (𝑥 / 𝑛)))
194189, 193breqtrrd 4611 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ ((𝐴 · 𝑥) / 𝑛))
195143, 144, 11, 146, 194lemul2ad 10843 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛)))
196114, 130absmuld 14041 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
19711, 146absidd 14009 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Λ‘𝑛)) = (Λ‘𝑛))
198197oveq1d 6564 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
199196, 198eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
200141recnd 9947 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑥) ∈ ℂ)
201114, 154, 200, 192div32d 10703 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛)))
202195, 199, 2013brtr4d 4615 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
2037, 134, 142, 202fsumle 14372 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
20436recnd 9947 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
20523, 204mulcld 9939 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℂ)
206114, 154, 192divcld 10680 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
2077, 205, 206fsummulc1 14359 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
208203, 207breqtrrd 4611 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
209133, 135, 137, 138, 208letrd 10073 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
210123recnd 9947 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
21190recnd 9947 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
21293recnd 9947 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
213211, 212mulcld 9939 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)) ∈ ℂ)
214210, 213addcld 9938 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ)
215114, 214mulcld 9939 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) ∈ ℂ)
216114, 211mulcld 9939 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
21726adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑥) ∈ ℂ)
218216, 217mulcld 9939 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ)
2197, 215, 218fsumsub 14362 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
220211, 217mulcld 9939 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) ∈ ℂ)
221114, 214, 220subdid 10365 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
22243adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
223222, 92relogdivd 24176 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) = ((log‘𝑥) − (log‘𝑛)))
224223oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛))))
225211, 217, 212subdid 10365 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
226224, 225eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
227226oveq2d 6565 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
228210, 220, 213subsub3d 10301 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
229227, 228eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
230229oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
231114, 211, 217mulassd 9942 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
232231oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
233221, 230, 2323eqtr4d 2654 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
234233sumeq2dv 14281 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
235 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
236 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 / 𝑛) = (𝑥 / 𝑚))
237236fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑚)))
238235, 237oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))
239 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (log‘𝑛) = (log‘𝑚))
240238, 239oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)))
241240cbvsumv 14274 . . . . . . . . . . . . . . 15 Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))
242 elfznn 12241 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))) → 𝑛 ∈ ℕ)
243242adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑛 ∈ ℕ)
244243, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℝ)
245244recnd 9947 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℂ)
246245anasss 677 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑛) ∈ ℂ)
247 elfznn 12241 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
248247adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
249248, 118syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
250249recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℂ)
251248nnrpd 11746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
252251relogcld 24173 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
253252recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℂ)
254250, 253mulcld 9939 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
255254adantrr 749 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
256246, 255mulcld 9939 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
25736, 256fsumfldivdiag 24716 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
25836adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
259258, 248nndivred 10946 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑚) ∈ ℝ)
260 chpcl 24650 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
261259, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
262261recnd 9947 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℂ)
263250, 262, 253mul32d 10125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))))
264249, 252remulcld 9949 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
265264recnd 9947 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
266265, 262mulcomd 9940 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))))
267 chpval 24648 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
268259, 267syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
269268oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
270 fzfid 12634 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin)
271270, 265, 245fsummulc1 14359 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
272269, 271eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
273263, 266, 2723eqtrd 2648 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
274273sumeq2dv 14281 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
275122recnd 9947 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
276115, 114, 275fsummulc2 14358 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
277276sumeq2dv 14281 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
278257, 274, 2773eqtr4d 2654 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
279241, 278syl5eq 2656 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
280114, 211, 212mulassd 9942 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
281280sumeq2dv 14281 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
282279, 281oveq12d 6567 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
2831042timesd 11152 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))))
284114, 210mulcld 9939 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
285114, 213mulcld 9939 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ)
2867, 284, 285fsumadd 14317 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
287282, 283, 2863eqtr4d 2654 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
288114, 210, 213adddid 9943 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
289288sumeq2dv 14281 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
290287, 289eqtr4d 2647 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
29191recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
2927, 26, 291fsummulc1 14359 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))
293290, 292oveq12d 6567 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
294219, 234, 2933eqtr4rd 2655 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))
295294fveq2d 6107 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
29624, 23, 204mulassd 9942 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
297209, 295, 2963brtr4d 4615 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥))
298109, 113, 43ledivmul2d 11802 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ↔ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥)))
299297, 298mpbird 246 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴))
300111, 113, 25, 299lediv1dd 11806 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)))
301109recnd 9947 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℂ)
302301, 204, 26, 110, 29divdiv1d 10711 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
303108, 26, 204, 29, 110divdiv32d 10705 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)))
304105, 107, 26, 29divsubdird 10719 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))))
305103, 104, 26, 29div23d 10717 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))))
306106, 26, 29divcan4d 10686 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))))
307305, 306oveq12d 6567 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
308304, 307eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
309308oveq1d 6564 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥))
310108, 204, 26, 110, 29divdiv1d 10711 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))
311303, 309, 3103eqtr3d 2652 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))
312311fveq2d 6107 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))))
31343, 25rpmulcld 11764 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
314313rpcnd 11750 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
315313rpne0d 11753 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
316108, 314, 315absdivd 14042 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))))
317313rpred 11748 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
318313rpge0d 11752 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 · (log‘𝑥)))
319317, 318absidd 14009 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑥 · (log‘𝑥))) = (𝑥 · (log‘𝑥)))
320319oveq2d 6565 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
321312, 316, 3203eqtrd 2648 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
322302, 321eqtr4d 2647 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)))
32324, 23, 26, 29divassd 10715 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))
324300, 322, 3233brtr3d 4614 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))
32521leabsd 14001 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
326101, 21, 102, 324, 325letrd 10073 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
327326adantrr 749 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
3281, 83, 21, 100, 327o1le 14231 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  +crp 11708  (,)cioo 12046  [,)cico 12048  ...cfz 12197  cfl 12453  abscabs 13822  𝑂(1)co1 14065  Σcsu 14264  eceu 14632  logclog 24105  Λcvma 24618  ψcchp 24619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-cht 24623  df-vma 24624  df-chp 24625  df-ppi 24626
This theorem is referenced by:  selberg3lem2  25047
  Copyright terms: Public domain W3C validator