MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4lem1div2uz2 Structured version   Visualization version   GIF version

Theorem fldiv4lem1div2uz2 12499
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
fldiv4lem1div2uz2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2uz2
StepHypRef Expression
1 eluzelz 11573 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 zre 11258 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 id 22 . . . . 5 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 4re 10974 . . . . . 6 4 ∈ ℝ
54a1i 11 . . . . 5 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6 4ne0 10994 . . . . . 6 4 ≠ 0
76a1i 11 . . . . 5 (𝑁 ∈ ℝ → 4 ≠ 0)
83, 5, 7redivcld 10732 . . . 4 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
92, 8syl 17 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
10 flle 12462 . . 3 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
111, 9, 103syl 18 . 2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
12 1red 9934 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
13 eluzelre 11574 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
14 rehalfcl 11135 . . . . 5 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
151, 2, 143syl 18 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ∈ ℝ)
16 2rp 11713 . . . . . . 7 2 ∈ ℝ+
1716a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
18 eluzle 11576 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
19 divge1 11774 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2))
2017, 13, 18, 19syl3anc 1318 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 / 2))
21 eluzelcn 11575 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
22 subhalfhalf 11143 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2321, 22syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2420, 23breqtrrd 4611 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 − (𝑁 / 2)))
2512, 13, 15, 24lesubd 10510 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ≤ (𝑁 − 1))
26 2t2e4 11054 . . . . . . . . 9 (2 · 2) = 4
2726eqcomi 2619 . . . . . . . 8 4 = (2 · 2)
2827a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 4 = (2 · 2))
2928oveq2d 6565 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = (𝑁 / (2 · 2)))
30 2cnne0 11119 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
3130a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
32 divdiv1 10615 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3321, 31, 31, 32syl3anc 1318 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3429, 33eqtr4d 2647 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2))
3534breq1d 4593 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
36 peano2rem 10227 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
37 2re 10967 . . . . . . . . 9 2 ∈ ℝ
38 2pos 10989 . . . . . . . . 9 0 < 2
3937, 38pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
4039a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → (2 ∈ ℝ ∧ 0 < 2))
4114, 36, 403jca 1235 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 / 2) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
421, 2, 413syl 18 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
43 lediv1 10767 . . . . 5 (((𝑁 / 2) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
4442, 43syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
4535, 44bitr4d 270 . . 3 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1)))
4625, 45mpbird 246 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2))
478flcld 12461 . . . . . 6 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
4847zred 11358 . . . . 5 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
4936rehalfcld 11156 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
5048, 8, 493jca 1235 . . . 4 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
511, 2, 503syl 18 . . 3 (𝑁 ∈ (ℤ‘2) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
52 letr 10010 . . 3 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
5351, 52syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
5411, 46, 53mp2and 711 1 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  4c4 10949  cz 11254  cuz 11563  +crp 11708  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455
This theorem is referenced by:  fldiv4lem1div2  12500  gausslemma2dlem4  24894
  Copyright terms: Public domain W3C validator