MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem2 Structured version   Visualization version   GIF version

Theorem dvfsumlem2 23594
Description: Lemma for dvfsumrlim 23598. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem2 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . . . 9 𝑆 = (𝑇(,)+∞)
2 ioossre 12106 . . . . . . . . 9 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3598 . . . . . . . 8 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . 8 (𝜑𝑌𝑆)
53, 4sseldi 3566 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . . 11 (𝜑𝑋𝑆)
76, 1syl6eleq 2698 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑇(,)+∞))
8 dvfsum.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
98rexrd 9968 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ*)
10 elioopnf 12138 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
127, 11mpbid 221 . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
1312simpld 474 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
14 reflcl 12459 . . . . . . . 8 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (⌊‘𝑋) ∈ ℝ)
165, 15resubcld 10337 . . . . . 6 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℝ)
1713rexrd 9968 . . . . . . . 8 (𝜑𝑋 ∈ ℝ*)
185rexrd 9968 . . . . . . . 8 (𝜑𝑌 ∈ ℝ*)
19 dvfsumlem1.4 . . . . . . . 8 (𝜑𝑋𝑌)
20 ubicc2 12160 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
2117, 18, 19, 20syl3anc 1318 . . . . . . 7 (𝜑𝑌 ∈ (𝑋[,]𝑌))
22 pnfxr 9971 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
2412simprd 478 . . . . . . . . . . . 12 (𝜑𝑇 < 𝑋)
25 ltpnf 11830 . . . . . . . . . . . . 13 (𝑌 ∈ ℝ → 𝑌 < +∞)
265, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑌 < +∞)
27 iccssioo 12113 . . . . . . . . . . . 12 (((𝑇 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝑇 < 𝑋𝑌 < +∞)) → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
289, 23, 24, 26, 27syl22anc 1319 . . . . . . . . . . 11 (𝜑 → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
2928, 1syl6sseqr 3615 . . . . . . . . . 10 (𝜑 → (𝑋[,]𝑌) ⊆ 𝑆)
3029sselda 3568 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑆)
313a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℝ)
32 dvfsum.a . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
33 dvfsum.b1 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐵𝑉)
34 dvfsum.b3 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
3531, 32, 33, 34dvmptrecl 23591 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
36 eqid 2610 . . . . . . . . . . . 12 (𝑥𝑆𝐵) = (𝑥𝑆𝐵)
3735, 36fmptd 6292 . . . . . . . . . . 11 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℝ)
38 nfcv 2751 . . . . . . . . . . . . 13 𝑦𝐵
39 nfcsb1v 3515 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵
40 csbeq1a 3508 . . . . . . . . . . . . 13 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
4138, 39, 40cbvmpt 4677 . . . . . . . . . . . 12 (𝑥𝑆𝐵) = (𝑦𝑆𝑦 / 𝑥𝐵)
4241fmpt 6289 . . . . . . . . . . 11 (∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ)
4337, 42sylibr 223 . . . . . . . . . 10 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ)
4443r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐵 ∈ ℝ)
4530, 44syldan 486 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐵 ∈ ℝ)
4645ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑋[,]𝑌)𝑦 / 𝑥𝐵 ∈ ℝ)
47 csbeq1 3502 . . . . . . . . 9 (𝑦 = 𝑌𝑦 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
4847eleq1d 2672 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
4948rspcv 3278 . . . . . . 7 (𝑌 ∈ (𝑋[,]𝑌) → (∀𝑦 ∈ (𝑋[,]𝑌)𝑦 / 𝑥𝐵 ∈ ℝ → 𝑌 / 𝑥𝐵 ∈ ℝ))
5021, 46, 49sylc 63 . . . . . 6 (𝜑𝑌 / 𝑥𝐵 ∈ ℝ)
5116, 50remulcld 9949 . . . . 5 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
52 eqid 2610 . . . . . . . . . . 11 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
5332, 52fmptd 6292 . . . . . . . . . 10 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℝ)
54 nfcv 2751 . . . . . . . . . . . 12 𝑦𝐴
55 nfcsb1v 3515 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐴
56 csbeq1a 3508 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
5754, 55, 56cbvmpt 4677 . . . . . . . . . . 11 (𝑥𝑆𝐴) = (𝑦𝑆𝑦 / 𝑥𝐴)
5857fmpt 6289 . . . . . . . . . 10 (∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑥𝑆𝐴):𝑆⟶ℝ)
5953, 58sylibr 223 . . . . . . . . 9 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ)
6059r19.21bi 2916 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℝ)
6130, 60syldan 486 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
6261ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑦 ∈ (𝑋[,]𝑌)𝑦 / 𝑥𝐴 ∈ ℝ)
63 csbeq1 3502 . . . . . . . 8 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
6463eleq1d 2672 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
6564rspcv 3278 . . . . . 6 (𝑌 ∈ (𝑋[,]𝑌) → (∀𝑦 ∈ (𝑋[,]𝑌)𝑦 / 𝑥𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
6621, 62, 65sylc 63 . . . . 5 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
6751, 66resubcld 10337 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
6813, 15resubcld 10337 . . . . . 6 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
69 lbicc2 12159 . . . . . . . 8 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
7017, 18, 19, 69syl3anc 1318 . . . . . . 7 (𝜑𝑋 ∈ (𝑋[,]𝑌))
71 csbeq1 3502 . . . . . . . . 9 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
7271eleq1d 2672 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7372rspcv 3278 . . . . . . 7 (𝑋 ∈ (𝑋[,]𝑌) → (∀𝑦 ∈ (𝑋[,]𝑌)𝑦 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
7470, 46, 73sylc 63 . . . . . 6 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7568, 74remulcld 9949 . . . . 5 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
76 csbeq1 3502 . . . . . . . 8 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
7776eleq1d 2672 . . . . . . 7 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
7877rspcv 3278 . . . . . 6 (𝑋 ∈ (𝑋[,]𝑌) → (∀𝑦 ∈ (𝑋[,]𝑌)𝑦 / 𝑥𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
7970, 62, 78sylc 63 . . . . 5 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
8075, 79resubcld 10337 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
81 fzfid 12634 . . . . 5 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
82 dvfsum.b2 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
8382ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
84 elfzuz 12209 . . . . . . 7 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
85 dvfsum.z . . . . . . 7 𝑍 = (ℤ𝑀)
8684, 85syl6eleqr 2699 . . . . . 6 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
87 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
8887eleq1d 2672 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
8988rspccva 3281 . . . . . 6 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
9083, 86, 89syl2an 493 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
9181, 90fsumrecl 14312 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
9268, 50remulcld 9949 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
9392, 79resubcld 10337 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
945, 13resubcld 10337 . . . . . . . . 9 (𝜑 → (𝑌𝑋) ∈ ℝ)
9550, 94remulcld 9949 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
9650recnd 9947 . . . . . . . . . 10 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
975recnd 9947 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
9813recnd 9947 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
9996, 97, 98subdid 10365 . . . . . . . . 9 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)))
100 eqid 2610 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
101100mulcn 22478 . . . . . . . . . . 11 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
10228, 2syl6ss 3580 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
103 ax-resscn 9872 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
104102, 103syl6ss 3580 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ ℂ)
105103a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
106 cncfmptc 22522 . . . . . . . . . . . 12 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
10750, 104, 105, 106syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
108 cncfmptid 22523 . . . . . . . . . . . 12 (((𝑋[,]𝑌) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
109102, 103, 108sylancl 693 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
110 remulcl 9900 . . . . . . . . . . 11 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑌 / 𝑥𝐵 · 𝑦) ∈ ℝ)
111100, 101, 107, 109, 103, 110cncfmpt2ss 22526 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
112 reelprrecn 9907 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
113112a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
114 ioossicc 12130 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
115114, 102syl5ss 3579 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
116115sselda 3568 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℝ)
117116recnd 9947 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℂ)
118 1cnd 9935 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 1 ∈ ℂ)
119 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
120119recnd 9947 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
121 1cnd 9935 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
122113dvmptid 23526 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
123100tgioo2 22414 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
124 iooretop 22379 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ∈ (topGen‘ran (,))
125124a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ∈ (topGen‘ran (,)))
126113, 120, 121, 122, 115, 123, 100, 125dvmptres 23532 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 1))
127113, 117, 118, 126, 96dvmptcmul 23533 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)))
12896mulid1d 9936 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐵 · 1) = 𝑌 / 𝑥𝐵)
129128mpteq2dv 4673 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
130127, 129eqtrd 2644 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
13129resmptd 5371 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
13232recnd 9947 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
133132, 52fmptd 6292 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℂ)
13434dmeqd 5248 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = dom (𝑥𝑆𝐵))
13533ralrimiva 2949 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑆 𝐵𝑉)
136 dmmptg 5549 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑆 𝐵𝑉 → dom (𝑥𝑆𝐵) = 𝑆)
137135, 136syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑥𝑆𝐵) = 𝑆)
138134, 137eqtrd 2644 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = 𝑆)
139 dvcn 23490 . . . . . . . . . . . . . . . 16 (((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴):𝑆⟶ℂ ∧ 𝑆 ⊆ ℝ) ∧ dom (ℝ D (𝑥𝑆𝐴)) = 𝑆) → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
140105, 133, 31, 138, 139syl31anc 1321 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
141 cncffvrn 22509 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ)) → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
142103, 140, 141sylancr 694 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
14353, 142mpbird 246 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℝ))
14457, 143syl5eqelr 2693 . . . . . . . . . . . 12 (𝜑 → (𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ))
145 rescncf 22508 . . . . . . . . . . . 12 ((𝑋[,]𝑌) ⊆ 𝑆 → ((𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ) → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
14629, 144, 145sylc 63 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
147131, 146eqeltrrd 2689 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
14860recnd 9947 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℂ)
14957oveq2i 6560 . . . . . . . . . . . 12 (ℝ D (𝑥𝑆𝐴)) = (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴))
15034, 149, 413eqtr3g 2667 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴)) = (𝑦𝑆𝑦 / 𝑥𝐵))
151114, 29syl5ss 3579 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝑆)
152113, 148, 44, 150, 151, 123, 100, 125dvmptres 23532 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
153114sseli 3564 . . . . . . . . . . 11 (𝑦 ∈ (𝑋(,)𝑌) → 𝑦 ∈ (𝑋[,]𝑌))
154 simpl 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝜑)
1554adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑆)
156 dvfsum.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ)
157156adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷 ∈ ℝ)
15813adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋 ∈ ℝ)
159 elicc2 12109 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
16013, 5, 159syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
161160biimpa 500 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌))
162161simp1d 1066 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ)
163 dvfsumlem1.3 . . . . . . . . . . . . . 14 (𝜑𝐷𝑋)
164163adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑋)
165161simp2d 1067 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑦)
166157, 158, 162, 164, 165letrd 10073 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑦)
167161simp3d 1068 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑌)
168 dvfsumlem1.5 . . . . . . . . . . . . 13 (𝜑𝑌𝑈)
169168adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑈)
170 simp2r 1081 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌𝑆)
171 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑆𝑌𝑆))
172171anbi2d 736 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝑦𝑆𝑘𝑆) ↔ (𝑦𝑆𝑌𝑆)))
173 breq2 4587 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑦𝑘𝑦𝑌))
174 breq1 4586 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑈𝑌𝑈))
175173, 1743anbi23d 1394 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝐷𝑦𝑦𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑌𝑌𝑈)))
176172, 1753anbi23d 1394 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈))))
177 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ V
178177, 87csbie 3525 . . . . . . . . . . . . . . . . 17 𝑘 / 𝑥𝐵 = 𝐶
179 csbeq1 3502 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌𝑘 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
180178, 179syl5eqr 2658 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌𝐶 = 𝑌 / 𝑥𝐵)
181180breq1d 4593 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → (𝐶𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
182176, 181imbi12d 333 . . . . . . . . . . . . . 14 (𝑘 = 𝑌 → (((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)))
183 nfv 1830 . . . . . . . . . . . . . . . 16 𝑥(𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))
184 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑥𝐶
185 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑥
186184, 185, 39nfbr 4629 . . . . . . . . . . . . . . . 16 𝑥 𝐶𝑦 / 𝑥𝐵
187183, 186nfim 1813 . . . . . . . . . . . . . . 15 𝑥((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
188 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
189188anbi1d 737 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝑥𝑆𝑘𝑆) ↔ (𝑦𝑆𝑘𝑆)))
190 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐷𝑥𝐷𝑦))
191 breq1 4586 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑘𝑦𝑘))
192190, 1913anbi12d 1392 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑘𝑘𝑈)))
193189, 1923anbi23d 1394 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))))
19440breq2d 4595 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐶𝐵𝐶𝑦 / 𝑥𝐵))
195193, 194imbi12d 333 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)))
196 dvfsum.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
197187, 195, 196chvar 2250 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
198182, 197vtoclg 3239 . . . . . . . . . . . . 13 (𝑌𝑆 → ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
199170, 198mpcom 37 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
200154, 30, 155, 166, 167, 169, 199syl123anc 1335 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
201153, 200sylan2 490 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
202 oveq2 6557 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑋))
203 oveq2 6557 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑌))
20413, 5, 111, 130, 147, 152, 201, 70, 21, 19, 202, 76, 203, 63dvle 23574 . . . . . . . . 9 (𝜑 → ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
20599, 204eqbrtrd 4605 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
20695, 66, 79, 205lesubd 10510 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ≤ (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
20792recnd 9947 . . . . . . . . 9 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
20851recnd 9947 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
20966recnd 9947 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
210207, 208, 209subsubd 10299 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
211208, 207negsubdi2d 10287 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
21215recnd 9947 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘𝑋) ∈ ℂ)
21397, 98, 212nnncan2d 10306 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) = (𝑌𝑋))
214213oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = ((𝑌𝑋) · 𝑌 / 𝑥𝐵))
21516recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
21668recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
217215, 216, 96subdird 10366 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
21894recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑋) ∈ ℂ)
219218, 96mulcomd 9940 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑌 / 𝑥𝐵) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
220214, 217, 2193eqtr3d 2652 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
221220negeqd 10154 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
222211, 221eqtr3d 2646 . . . . . . . . . 10 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
223222oveq1d 6564 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
22495recnd 9947 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℂ)
225224, 209negsubdid 10286 . . . . . . . . 9 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
226223, 225eqtr4d 2647 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴))
227224, 209negsubdi2d 10287 . . . . . . . 8 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
228210, 226, 2273eqtrd 2648 . . . . . . 7 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
229206, 228breqtrrd 4611 . . . . . 6 (𝜑𝑋 / 𝑥𝐴 ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)))
23079, 92, 67, 229lesubd 10510 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
231 flle 12462 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
23213, 231syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
23313, 15subge0d 10496 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 − (⌊‘𝑋)) ↔ (⌊‘𝑋) ≤ 𝑋))
234232, 233mpbird 246 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
235200ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝑋[,]𝑌)𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
23671breq2d 4595 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵))
237236rspcv 3278 . . . . . . . 8 (𝑋 ∈ (𝑋[,]𝑌) → (∀𝑦 ∈ (𝑋[,]𝑌)𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵))
23870, 235, 237sylc 63 . . . . . . 7 (𝜑𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵)
23950, 74, 68, 234, 238lemul2ad 10843 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
24092, 75, 79, 239lesub1dd 10522 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
24167, 93, 80, 230, 240letrd 10073 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
24267, 80, 91, 241leadd1dd 10520 . . 3 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
243 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
244 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
245 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
246 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
247 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
2481, 85, 243, 156, 244, 8, 32, 33, 82, 34, 87, 245, 196, 246, 6, 4, 163, 19, 168, 247dvfsumlem1 23593 . . 3 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
24913leidd 10473 . . . 4 (𝜑𝑋𝑋)
25017, 18, 245, 19, 168xrletrd 11869 . . . 4 (𝜑𝑋𝑈)
251 fllep1 12464 . . . . 5 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
25213, 251syl 17 . . . 4 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
2531, 85, 243, 156, 244, 8, 32, 33, 82, 34, 87, 245, 196, 246, 6, 6, 163, 249, 250, 252dvfsumlem1 23593 . . 3 (𝜑 → (𝐻𝑋) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
254242, 248, 2533brtr4d 4615 . 2 (𝜑 → (𝐻𝑌) ≤ (𝐻𝑋))
25580, 74resubcld 10337 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ∈ ℝ)
25667, 50resubcld 10337 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) ∈ ℝ)
257 peano2rem 10227 . . . . . . . . . . 11 ((𝑋 − (⌊‘𝑋)) ∈ ℝ → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
25868, 257syl 17 . . . . . . . . . 10 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
259258, 74remulcld 9949 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
260259, 79resubcld 10337 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
261 peano2rem 10227 . . . . . . . . . . 11 ((𝑌 − (⌊‘𝑋)) ∈ ℝ → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
26216, 261syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
263262, 74remulcld 9949 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
264263, 66resubcld 10337 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
265262, 50remulcld 9949 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ∈ ℝ)
266265, 66resubcld 10337 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
267259recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
268263recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
269267, 268subcld 10271 . . . . . . . . . . . . 13 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) ∈ ℂ)
270269, 209addcomd 10117 . . . . . . . . . . . 12 (𝜑 → (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
271267, 268, 209subsubd 10299 . . . . . . . . . . . 12 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
272209, 268, 267subsub2d 10300 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
273270, 271, 2723eqtr4d 2654 . . . . . . . . . . 11 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
274 1cnd 9935 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
275215, 216, 274nnncan2d 10306 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))))
276275, 213eqtrd 2644 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = (𝑌𝑋))
277276oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((𝑌𝑋) · 𝑋 / 𝑥𝐵))
278262recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℂ)
279258recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℂ)
28074recnd 9947 . . . . . . . . . . . . . 14 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
281278, 279, 280subdird 10366 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
282218, 280mulcomd 9940 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
283277, 281, 2823eqtr3d 2652 . . . . . . . . . . . 12 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
284283oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
285273, 284eqtrd 2644 . . . . . . . . . 10 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
28674, 94remulcld 9949 . . . . . . . . . . 11 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
287 cncfmptc 22522 . . . . . . . . . . . . . . 15 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
28874, 104, 105, 287syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
289 remulcl 9900 . . . . . . . . . . . . . 14 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 / 𝑥𝐵 · 𝑦) ∈ ℝ)
290100, 101, 288, 109, 103, 289cncfmpt2ss 22526 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
291113, 117, 118, 126, 280dvmptcmul 23533 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)))
292280mulid1d 9936 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 / 𝑥𝐵 · 1) = 𝑋 / 𝑥𝐵)
293292mpteq2dv 4673 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
294291, 293eqtrd 2644 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
2956adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑆)
296162rexrd 9968 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ*)
29718adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 ∈ ℝ*)
298245adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑈 ∈ ℝ*)
299296, 297, 298, 167, 169xrletrd 11869 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑈)
300 vex 3176 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
301 eleq1 2676 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑆𝑦𝑆))
302301anbi2d 736 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝑋𝑆𝑘𝑆) ↔ (𝑋𝑆𝑦𝑆)))
303 breq2 4587 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑋𝑘𝑋𝑦))
304 breq1 4586 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
305303, 3043anbi23d 1394 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝐷𝑋𝑋𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑦𝑦𝑈)))
306302, 3053anbi23d 1394 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈))))
307 csbeq1 3502 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦𝑘 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
308178, 307syl5eqr 2658 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝐶 = 𝑦 / 𝑥𝐵)
309308breq1d 4593 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐶𝑋 / 𝑥𝐵𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵))
310306, 309imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)))
311 simp2l 1080 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝑋𝑆)
312 nfv 1830 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))
313 nfcsb1v 3515 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑋 / 𝑥𝐵
314184, 185, 313nfbr 4629 . . . . . . . . . . . . . . . . . . 19 𝑥 𝐶𝑋 / 𝑥𝐵
315312, 314nfim 1813 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
316 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑆𝑋𝑆))
317316anbi1d 737 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝑥𝑆𝑘𝑆) ↔ (𝑋𝑆𝑘𝑆)))
318 breq2 4587 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
319 breq1 4586 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑘𝑋𝑘))
320318, 3193anbi12d 1392 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑘𝑘𝑈)))
321317, 3203anbi23d 1394 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))))
322 csbeq1a 3508 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
323322breq2d 4595 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐶𝐵𝐶𝑋 / 𝑥𝐵))
324321, 323imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)))
325315, 324, 196vtoclg1f 3238 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵))
326311, 325mpcom 37 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
327300, 310, 326vtocl 3232 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
328154, 295, 30, 164, 165, 299, 327syl123anc 1335 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
329153, 328sylan2 490 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
330 oveq2 6557 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑋))
331 oveq2 6557 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑌))
33213, 5, 147, 152, 290, 294, 329, 70, 21, 19, 76, 330, 63, 331dvle 23574 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
333280, 97, 98subdid 10365 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
334332, 333breqtrrd 4611 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
33566, 79, 286, 334subled 10509 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))) ≤ 𝑋 / 𝑥𝐴)
336285, 335eqbrtrd 4605 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) ≤ 𝑋 / 𝑥𝐴)
337259, 264, 79, 336subled 10509 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
338262renegcld 10336 . . . . . . . . . . . 12 (𝜑 → -((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
339 1red 9934 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
3405, 15, 339lesubadd2d 10505 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑋)) ≤ 1 ↔ 𝑌 ≤ ((⌊‘𝑋) + 1)))
341247, 340mpbird 246 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ≤ 1)
34216, 339suble0d 10497 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ (𝑌 − (⌊‘𝑋)) ≤ 1))
343341, 342mpbird 246 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ≤ 0)
344262le0neg1d 10478 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1)))
345343, 344mpbid 221 . . . . . . . . . . . 12 (𝜑 → 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1))
34650, 74, 338, 345, 238lemul2ad 10843 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
347278, 96mulneg1d 10362 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
348278, 280mulneg1d 10362 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
349346, 347, 3483brtr3d 4614 . . . . . . . . . 10 (𝜑 → -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
350263, 265lenegd 10485 . . . . . . . . . 10 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ↔ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
351349, 350mpbird 246 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
352263, 265, 66, 351lesub1dd 10522 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
353260, 264, 266, 337, 352letrd 10073 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
354216, 274, 280subdird 10366 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)))
355280mulid2d 9937 . . . . . . . . . 10 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
356355oveq2d 6565 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
357354, 356eqtrd 2644 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
358357oveq1d 6564 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
359215, 274, 96subdird 10366 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
36096mulid2d 9937 . . . . . . . . . 10 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
361360oveq2d 6565 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
362359, 361eqtrd 2644 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
363362oveq1d 6564 . . . . . . 7 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
364353, 358, 3633brtr3d 4614 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
36575recnd 9947 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
36679recnd 9947 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
367365, 366, 280sub32d 10303 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
368208, 209, 96sub32d 10303 . . . . . 6 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
369364, 367, 3683brtr4d 4615 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵))
370255, 256, 91, 369leadd1dd 10520 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
37180recnd 9947 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℂ)
37291recnd 9947 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
373371, 372, 280addsubd 10292 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
37467recnd 9947 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℂ)
375374, 372, 96addsubd 10292 . . . 4 (𝜑 → (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
376370, 373, 3753brtr4d 4615 . . 3 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
377253oveq1d 6564 . . 3 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵))
378248oveq1d 6564 . . 3 (𝜑 → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
379376, 377, 3783brtr4d 4615 . 2 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
380254, 379jca 553 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  csb 3499  wss 3540  {cpr 4127   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cz 11254  cuz 11563  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  cfl 12453  Σcsu 14264  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvfsumlem3  23595
  Copyright terms: Public domain W3C validator