MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim Structured version   Visualization version   GIF version

Theorem dvfsumrlim 23598
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlim (𝜑𝐺 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim
Dummy variables 𝑦 𝑒 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 12106 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3598 . . 3 𝑆 ⊆ ℝ
43a1i 11 . 2 (𝜑𝑆 ⊆ ℝ)
5 dvfsum.z . . . 4 𝑍 = (ℤ𝑀)
6 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
8 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
9 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
10 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
11 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
12 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
13 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
14 dvfsum.c . . . 4 (𝑥 = 𝑘𝐵 = 𝐶)
15 dvfsumrlim.g . . . 4 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
161, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dvfsumrlimf 23592 . . 3 (𝜑𝐺:𝑆⟶ℝ)
17 ax-resscn 9872 . . 3 ℝ ⊆ ℂ
18 fss 5969 . . 3 ((𝐺:𝑆⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝑆⟶ℂ)
1916, 17, 18sylancl 693 . 2 (𝜑𝐺:𝑆⟶ℂ)
201supeq1i 8236 . . 3 sup(𝑆, ℝ*, < ) = sup((𝑇(,)+∞), ℝ*, < )
21 ressxr 9962 . . . . 5 ℝ ⊆ ℝ*
2221, 9sseldi 3566 . . . 4 (𝜑𝑇 ∈ ℝ*)
239renepnfd 9969 . . . 4 (𝜑𝑇 ≠ +∞)
24 ioopnfsup 12525 . . . 4 ((𝑇 ∈ ℝ*𝑇 ≠ +∞) → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2522, 23, 24syl2anc 691 . . 3 (𝜑 → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2620, 25syl5eq 2656 . 2 (𝜑 → sup(𝑆, ℝ*, < ) = +∞)
27 dvfsumrlim.k . . . 4 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2811, 27rlimmptrcl 14186 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
2928ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
3029, 4rlim0 14087 . . . 4 (𝜑 → ((𝑥𝑆𝐵) ⇝𝑟 0 ↔ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3127, 30mpbid 221 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒))
323a1i 11 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑆 ⊆ ℝ)
33 peano2re 10088 . . . . . . . . 9 (𝑇 ∈ ℝ → (𝑇 + 1) ∈ ℝ)
349, 33syl 17 . . . . . . . 8 (𝜑 → (𝑇 + 1) ∈ ℝ)
3534, 7ifcld 4081 . . . . . . 7 (𝜑 → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
3635adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
37 rexico 13941 . . . . . 6 ((𝑆 ⊆ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3832, 36, 37syl2anc 691 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
39 elicopnf 12140 . . . . . . . . . . . . . 14 (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4035, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4140simprbda 651 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ ℝ)
429adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ)
4342, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ∈ ℝ)
4442ltp1d 10833 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < (𝑇 + 1))
4540simplbda 652 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)
467adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷 ∈ ℝ)
47 maxle 11896 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℝ ∧ (𝑇 + 1) ∈ ℝ ∧ 𝑐 ∈ ℝ) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4846, 43, 41, 47syl3anc 1318 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4945, 48mpbid 221 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐))
5049simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ≤ 𝑐)
5142, 43, 41, 44, 50ltletrd 10076 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < 𝑐)
5222adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ*)
53 elioopnf 12138 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5452, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5541, 51, 54mpbir2and 959 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ (𝑇(,)+∞))
5655, 1syl6eleqr 2699 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐𝑆)
5749simpld 474 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷𝑐)
5856, 57jca 553 . . . . . . . . 9 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
5958adantlr 747 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
60 simprrl 800 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝑐𝑆)
6160adantrr 749 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑆)
623, 61sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 ∈ ℝ)
6362leidd 10473 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑐)
64 nfv 1830 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑐𝑐
65 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥abs
66 nfcsb1v 3515 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑐 / 𝑥𝐵
6765, 66nffv 6110 . . . . . . . . . . . . . . . . . . . 20 𝑥(abs‘𝑐 / 𝑥𝐵)
68 nfcv 2751 . . . . . . . . . . . . . . . . . . . 20 𝑥 <
69 nfcv 2751 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑒
7067, 68, 69nfbr 4629 . . . . . . . . . . . . . . . . . . 19 𝑥(abs‘𝑐 / 𝑥𝐵) < 𝑒
7164, 70nfim 1813 . . . . . . . . . . . . . . . . . 18 𝑥(𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)
72 breq2 4587 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑐𝑥𝑐𝑐))
73 csbeq1a 3508 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐𝐵 = 𝑐 / 𝑥𝐵)
7473fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑐 → (abs‘𝐵) = (abs‘𝑐 / 𝑥𝐵))
7574breq1d 4593 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ((abs‘𝐵) < 𝑒 ↔ (abs‘𝑐 / 𝑥𝐵) < 𝑒))
7672, 75imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7771, 76rspc 3276 . . . . . . . . . . . . . . . . 17 (𝑐𝑆 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7861, 77syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7963, 78mpid 43 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘𝑐 / 𝑥𝐵) < 𝑒))
804, 10, 11, 13dvmptrecl 23591 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
8180adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
82 dvfsumrlim.l . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
831, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82, 15, 27dvfsumrlimge0 23597 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
84 elrege0 12149 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8581, 83, 84sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ (0[,)+∞))
8685expr 641 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑆) → (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8786ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
89 simprrr 801 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝐷𝑐)
9089adantrr 749 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷𝑐)
91 nfv 1830 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝐷𝑐
9266nfel1 2765 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑐 / 𝑥𝐵 ∈ (0[,)+∞)
9391, 92nfim 1813 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
94 breq2 4587 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐷𝑥𝐷𝑐))
9573eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐵 ∈ (0[,)+∞) ↔ 𝑐 / 𝑥𝐵 ∈ (0[,)+∞)))
9694, 95imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐 → ((𝐷𝑥𝐵 ∈ (0[,)+∞)) ↔ (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9793, 96rspc 3276 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝑆 → (∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)) → (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9861, 88, 90, 97syl3c 64 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
99 elrege0 12149 . . . . . . . . . . . . . . . . . . 19 (𝑐 / 𝑥𝐵 ∈ (0[,)+∞) ↔ (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
10098, 99sylib 207 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
101 absid 13884 . . . . . . . . . . . . . . . . . 18 ((𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
103102breq1d 4593 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒𝑐 / 𝑥𝐵 < 𝑒))
1046adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ∈ ℤ)
1057adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷 ∈ ℝ)
1068adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ≤ (𝐷 + 1))
1079adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑇 ∈ ℝ)
10810adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10911adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐵𝑉)
11012adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
11113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
112 pnfxr 9971 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → +∞ ∈ ℝ*)
114 3simpa 1051 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
115114, 82syl3an3 1353 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
1161153adant1r 1311 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
117833adantr3 1215 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
118117adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
119 simprrl 800 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦𝑆)
120 simprrr 801 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑦)
1213, 21sstri 3577 . . . . . . . . . . . . . . . . . . . 20 𝑆 ⊆ ℝ*
122121, 119sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ∈ ℝ*)
123 pnfge 11840 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
124122, 123syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ≤ +∞)
1251, 5, 104, 105, 106, 107, 108, 109, 110, 111, 14, 113, 116, 15, 118, 61, 119, 90, 120, 124dvfsumlem4 23596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵)
12619adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐺:𝑆⟶ℂ)
127126, 119ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑦) ∈ ℂ)
128126, 61ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑐) ∈ ℂ)
129127, 128subcld 10271 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((𝐺𝑦) − (𝐺𝑐)) ∈ ℂ)
130129abscld 14023 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ)
131100simpld 474 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ ℝ)
132 simprll 798 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ+)
133132rpred 11748 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ)
134 lelttr 10007 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ ∧ 𝑐 / 𝑥𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
135130, 131, 133, 134syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
136125, 135mpand 707 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
137103, 136sylbid 229 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
13879, 137syld 46 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
139138anassrs 678 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ (𝑦𝑆𝑐𝑦)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
140139expr 641 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (𝑐𝑦 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
141140com23 84 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
142141ralrimdva 2952 . . . . . . . . . 10 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
143142, 60jctild 564 . . . . . . . . 9 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
144143anassrs 678 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑐𝑆𝐷𝑐)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
14559, 144syldan 486 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
146145expimpd 627 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ∧ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
147146reximdv2 2997 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
14838, 147sylbird 249 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
149148ralimdva 2945 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
15031, 149mpd 15 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
1514, 19, 26, 150caucvgr 14254 1 (𝜑𝐺 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  csb 3499  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  +crp 11708  (,)cioo 12046  [,)cico 12048  ...cfz 12197  cfl 12453  abscabs 13822  𝑟 crli 14064  Σcsu 14264   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvfsumrlim3  23600
  Copyright terms: Public domain W3C validator