MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg1d Structured version   Visualization version   GIF version

Theorem mulneg1d 10362
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1 (𝜑𝐴 ∈ ℂ)
mulnegd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulneg1d (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg1d
StepHypRef Expression
1 mulm1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulnegd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 mulneg1 10345 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
41, 2, 3syl2anc 691 1 (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813   · cmul 9820  -cneg 10146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148
This theorem is referenced by:  divsubdiv  10620  recgt0  10746  xmulneg1  11971  expmulz  12768  discr1  12862  iseraltlem3  14262  incexclem  14407  incexc  14408  mulgass  17402  cphipval  22850  mbfmulc2lem  23220  mbfmulc2  23236  itg2monolem1  23323  itgmulc2  23406  dvexp3  23545  dvfsumlem2  23594  aaliou3lem2  23902  advlogexp  24201  logtayl2  24208  dcubic2  24371  dcubic  24373  ftalem5  24603  lgsdilem  24849  2sqlem4  24946  pntrsumo1  25054  pntrlog2bndlem4  25069  brbtwn2  25585  colinearalglem4  25589  axeuclidlem  25642  fwddifnp1  31442  itgmulc2nc  32648  pellexlem6  36416  jm2.19lem1  36574  jm2.19lem4  36577  jm2.19  36578  binomcxplemnotnn0  37577  sineq0ALT  38195  mulltgt0  38204  fperiodmul  38459  cosknegpi  38752  dvrecg  38800  dvmptdiv  38807  itgsinexplem1  38845  stoweidlem13  38906  stoweidlem42  38935  fourierdlem39  39039  fourierdlem41  39041  fourierdlem48  39047  fourierdlem49  39048  fourierdlem64  39063  etransclem46  39173
  Copyright terms: Public domain W3C validator