Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirc Structured version   Visualization version   GIF version

Theorem areacirc 32675
Description: The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirc ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirc
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . . . 6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
2 opabssxp 5116 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ × ℝ)
31, 2eqsstri 3598 . . . . 5 𝑆 ⊆ (ℝ × ℝ)
43a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ⊆ (ℝ × ℝ))
51areacirclem5 32674 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
6 resqcl 12793 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
763ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
8 resqcl 12793 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
983ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
107, 9resubcld 10337 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
1110adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12 absresq 13890 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
13123ad2ant3 1077 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
1413breq1d 4593 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
15 recn 9905 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
1615abscld 14023 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
17163ad2ant3 1077 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
18 simp1 1054 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
1915absge0d 14031 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
20193ad2ant3 1077 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
21 simp2 1055 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2217, 18, 20, 21le2sqd 12906 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
237, 9subge0d 10496 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2414, 22, 233bitr4d 299 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
2524biimpa 500 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
2611, 25resqrtcld 14004 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
2726renegcld 10336 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
28 iccmbl 23141 . . . . . . . . . 10 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
2927, 26, 28syl2anc 691 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
30 mblvol 23105 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3129, 30syl 17 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3211, 25sqrtge0d 14007 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
3326, 26, 32, 32addge0d 10482 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
34 recn 9905 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
3534sqcld 12868 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
36353ad2ant1 1075 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
3715sqcld 12868 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
38373ad2ant3 1077 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
3936, 38subcld 10271 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
4039sqrtcld 14024 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4140adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4241, 41subnegd 10278 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
4342breq2d 4595 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
4426, 27subge0d 10496 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4543, 44bitr3d 269 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4633, 45mpbid 221 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
47 ovolicc 23098 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4827, 26, 46, 47syl3anc 1318 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4931, 48eqtrd 2644 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
5026, 27resubcld 10337 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈ ℝ)
5149, 50eqeltrd 2688 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)
52 volf 23104 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
53 ffn 5958 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
54 elpreima 6245 . . . . . . . . . 10 (vol Fn dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)))
5552, 53, 54mp2b 10 . . . . . . . . 9 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ))
5629, 51, 55sylanbrc 695 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ))
57 0mbl 23114 . . . . . . . . . 10 ∅ ∈ dom vol
58 mblvol 23105 . . . . . . . . . . . . 13 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
5957, 58ax-mp 5 . . . . . . . . . . . 12 (vol‘∅) = (vol*‘∅)
60 ovol0 23068 . . . . . . . . . . . 12 (vol*‘∅) = 0
6159, 60eqtri 2632 . . . . . . . . . . 11 (vol‘∅) = 0
62 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
6361, 62eqeltri 2684 . . . . . . . . . 10 (vol‘∅) ∈ ℝ
64 elpreima 6245 . . . . . . . . . . 11 (vol Fn dom vol → (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ)))
6552, 53, 64mp2b 10 . . . . . . . . . 10 (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ))
6657, 63, 65mpbir2an 957 . . . . . . . . 9 ∅ ∈ (vol “ ℝ)
6766a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (vol “ ℝ))
6856, 67ifclda 4070 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈ (vol “ ℝ))
695, 68eqeltrd 2688 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
70693expa 1257 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
7170ralrimiva 2949 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
725fveq2d 6107 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
73723expa 1257 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
7473mpteq2dva 4672 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) = (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))))
75 renegcl 10223 . . . . . . . 8 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
7675adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → -𝑅 ∈ ℝ)
77 simpl 472 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℝ)
78 iccssre 12126 . . . . . . 7 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
7976, 77, 78syl2anc 691 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅[,]𝑅) ⊆ ℝ)
80 rembl 23115 . . . . . . 7 ℝ ∈ dom vol
8180a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ℝ ∈ dom vol)
82 fvex 6113 . . . . . . 7 (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈ V
8382a1i 11 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈ V)
84 eldif 3550 . . . . . . . . 9 (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)))
85 3anass 1035 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅)))
8685a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
87753ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → -𝑅 ∈ ℝ)
88 elicc2 12109 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
8987, 18, 88syl2anc 691 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
90 simp3 1056 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
9190, 18absled 14017 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
9290biantrurd 528 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9391, 92bitrd 267 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9486, 89, 933bitr4rd 300 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9594biimpd 218 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9695con3d 147 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))
97963expia 1259 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)))
9897impd 446 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9984, 98syl5bi 231 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
10099imp 444 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅)
101 iffalse 4045 . . . . . . . . 9 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
102101fveq2d 6107 . . . . . . . 8 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘∅))
103102, 61syl6eq 2660 . . . . . . 7 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
104100, 103syl 17 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10576, 77, 88syl2anc 691 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
10691biimprd 237 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
107106expd 451 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅)))
1081073expia 1259 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅))))
1091083impd 1273 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
110105, 109sylbid 229 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅))
1111103impia 1253 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅)
112 iftrue 4042 . . . . . . . . . . . 12 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
113112fveq2d 6107 . . . . . . . . . . 11 ((abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
114111, 113syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
11563ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
11675, 78mpancom 700 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
117116sselda 3568 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
1181173adant2 1073 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
119118resqcld 12897 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
120115, 119resubcld 10337 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12175, 88mpancom 700 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
122121adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
12322, 91, 143bitr3rd 298 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅𝑡𝑡𝑅)))
12423, 123bitrd 267 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
125124biimprd 237 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
126125expd 451 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))
1271263expia 1259 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
1281273impd 1273 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
129122, 128sylbid 229 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
1301293impia 1253 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
131120, 130resqrtcld 14004 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
132131renegcld 10336 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
133132, 131, 28syl2anc 691 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
134133, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
135120recnd 9947 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
136135sqrtcld 14024 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
137136, 136subnegd 10278 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
138120, 130sqrtge0d 14007 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
139131, 131, 138, 138addge0d 10482 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
140137breq2d 4595 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
141131, 132subge0d 10496 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
142140, 141bitr3d 269 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
143139, 142mpbid 221 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
144132, 131, 143, 47syl3anc 1318 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
1451362timesd 11152 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
146137, 144, 1453eqtr4d 2654 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
147114, 134, 1463eqtrd 2648 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
1481473expa 1257 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
149148mpteq2dva 4672 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
150 areacirclem3 32672 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1)
151149, 150eqeltrd 2688 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15279, 81, 83, 104, 151iblss2 23378 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15374, 152eqeltrd 2688 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1)
154 dmarea 24484 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1))
1554, 71, 153, 154syl3anbrc 1239 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ∈ dom area)
156 areaval 24491 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
157155, 156syl 17 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
158 elioore 12076 . . . . . 6 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ)
15953expa 1257 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
160158, 159sylan2 490 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
161160fveq2d 6107 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
162161itgeq2dv 23354 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
163 ioossre 12106 . . . . 5 (-𝑅(,)𝑅) ⊆ ℝ
164163a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ ℝ)
165 eldif 3550 . . . . . 6 (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)))
16675rexrd 9968 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ*)
167 rexr 9964 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
168 elioo2 12087 . . . . . . . . . . . . . 14 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
169166, 167, 168syl2anc 691 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
1701693ad2ant1 1075 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
17190biantrurd 528 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
17290, 18absltd 14016 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
173 3anass 1035 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅)))
174173a1i 11 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
175171, 172, 1743bitr4rd 300 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅))
176170, 175bitrd 267 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅))
177176notbid 307 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅))
17818, 17lenltd 10062 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅))
179177, 178bitr4d 270 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡)))
1805adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
181180fveq2d 6107 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
18217anim1i 590 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅))
183 eqle 10018 . . . . . . . . . . . . . . . 16 (((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅)
184182, 183, 1133syl 18 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
185 oveq1 6556 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑡) = 𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2))
186185adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2))
18713adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2))
188186, 187eqtr3d 2646 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2))
189 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅↑2) = (𝑡↑2) → ((𝑅↑2) − (𝑡↑2)) = ((𝑡↑2) − (𝑡↑2)))
190189fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑡↑2) − (𝑡↑2))))
191190negeqd 10154 . . . . . . . . . . . . . . . . . . . 20 ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) = -(√‘((𝑡↑2) − (𝑡↑2))))
192191, 190oveq12d 6567 . . . . . . . . . . . . . . . . . . 19 ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))))
1938recnd 9947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
194193subidd 10259 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0)
195194fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = (√‘0))
196195negeqd 10154 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = -(√‘0))
197 sqrt0 13830 . . . . . . . . . . . . . . . . . . . . . . . 24 (√‘0) = 0
198197negeqi 10153 . . . . . . . . . . . . . . . . . . . . . . 23 -(√‘0) = -0
199 neg0 10206 . . . . . . . . . . . . . . . . . . . . . . 23 -0 = 0
200198, 199eqtri 2632 . . . . . . . . . . . . . . . . . . . . . 22 -(√‘0) = 0
201196, 200syl6eq 2660 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = 0)
202195, 197syl6eq 2660 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = 0)
203201, 202oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
2042033ad2ant3 1077 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
205192, 204sylan9eqr 2666 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (0[,]0))
206205fveq2d 6107 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol‘(0[,]0)))
207 iccmbl 23141 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom vol)
20862, 62, 207mp2an 704 . . . . . . . . . . . . . . . . . . 19 (0[,]0) ∈ dom vol
209 mblvol 23105 . . . . . . . . . . . . . . . . . . 19 ((0[,]0) ∈ dom vol → (vol‘(0[,]0)) = (vol*‘(0[,]0)))
210208, 209ax-mp 5 . . . . . . . . . . . . . . . . . 18 (vol‘(0[,]0)) = (vol*‘(0[,]0))
211 0xr 9965 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
212 iccid 12091 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → (0[,]0) = {0})
213212fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ* → (vol*‘(0[,]0)) = (vol*‘{0}))
214211, 213ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]0)) = (vol*‘{0})
215 ovolsn 23070 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ → (vol*‘{0}) = 0)
21662, 215ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘{0}) = 0
217214, 216eqtri 2632 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]0)) = 0
218210, 217eqtri 2632 . . . . . . . . . . . . . . . . 17 (vol‘(0[,]0)) = 0
219206, 218syl6eq 2660 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
220188, 219syldan 486 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
221184, 220eqtrd 2644 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
222221ex 449 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
223222adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
22418, 17ltnled 10063 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
225224adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
226 simpl1 1057 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ)
22717adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ)
228 simpr 476 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡))
229226, 227, 228leltned 10069 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅))
230225, 229bitr3d 269 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅))
231230, 103syl6bir 243 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
232223, 231pm2.61dne 2868 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
233181, 232eqtrd 2644 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0)
234233ex 449 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0))
235179, 234sylbid 229 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))
2362353expia 1259 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)))
237236impd 446 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
238165, 237syl5bi 231 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
239238imp 444 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0)
240164, 239itgss 23384 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
241 negeq 10152 . . . . . . . . . 10 (𝑅 = 0 → -𝑅 = -0)
242241, 199syl6eq 2660 . . . . . . . . 9 (𝑅 = 0 → -𝑅 = 0)
243 id 22 . . . . . . . . 9 (𝑅 = 0 → 𝑅 = 0)
244242, 243oveq12d 6567 . . . . . . . 8 (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0))
245 iooid 12074 . . . . . . . 8 (0(,)0) = ∅
246244, 245syl6eq 2660 . . . . . . 7 (𝑅 = 0 → (-𝑅(,)𝑅) = ∅)
247246adantl 481 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅)
248 itgeq1 23345 . . . . . 6 ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
249247, 248syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
250 itg0 23352 . . . . . 6 ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0
251 oveq1 6556 . . . . . . . . 9 (𝑅 = 0 → (𝑅↑2) = (0↑2))
252251oveq2d 6565 . . . . . . . 8 (𝑅 = 0 → (π · (𝑅↑2)) = (π · (0↑2)))
253 sq0 12817 . . . . . . . . . 10 (0↑2) = 0
254253oveq2i 6560 . . . . . . . . 9 (π · (0↑2)) = (π · 0)
255 picn 24015 . . . . . . . . . 10 π ∈ ℂ
256255mul01i 10105 . . . . . . . . 9 (π · 0) = 0
257254, 256eqtr2i 2633 . . . . . . . 8 0 = (π · (0↑2))
258252, 257syl6reqr 2663 . . . . . . 7 (𝑅 = 0 → 0 = (π · (𝑅↑2)))
259258adantl 481 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2)))
260250, 259syl5eq 2656 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
261249, 260eqtrd 2644 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
262 simp1 1054 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ)
263 0red 9920 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ∈ ℝ)
264 simpr 476 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ≤ 𝑅)
265263, 77, 264leltned 10069 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0 < 𝑅𝑅 ≠ 0))
266265biimp3ar 1425 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 0 < 𝑅)
267262, 266elrpd 11745 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
2682673expa 1257 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
269158, 16syl 17 . . . . . . . . . . 11 (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ)
270269adantl 481 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ)
271 rpre 11715 . . . . . . . . . . 11 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
272271adantr 480 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ)
273271renegcld 10336 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
274273rexrd 9968 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ*)
275 rpxr 11716 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
276274, 275, 168syl2anc 691 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
277 simpr 476 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
278271adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
279277, 278absltd 14016 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
280279biimprd 237 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
281280exp4b 630 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅))))
2822813impd 1273 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
283276, 282sylbid 229 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅))
284283imp 444 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅)
285270, 272, 284ltled 10064 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅)
286285, 113syl 17 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
287271resqcld 12897 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
288287recnd 9947 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
289288adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
290193adantl 481 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
291289, 290subcld 10271 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
292291sqrtcld 14024 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
293292, 292subnegd 10278 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
294158, 293sylan2 490 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
295287adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
2968adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
297295, 296resubcld 10337 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
298158, 297sylan2 490 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
299 0red 9920 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ)
30016adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
30119adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
302 rpge0 11721 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
303302adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
304300, 278, 301, 303lt2sqd 12905 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2)))
30512adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
306305breq1d 4593 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2)))
307304, 279, 3063bitr3rd 298 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
308296, 295posdifd 10493 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
309307, 308bitr3d 269 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
310309biimpd 218 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
311310exp4b 630 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2))))))
3123113impd 1273 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
313276, 312sylbid 229 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
314313imp 444 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2)))
315299, 298, 314ltled 10064 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
316298, 315resqrtcld 14004 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
317316renegcld 10336 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
318317, 316, 28syl2anc 691 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
319318, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
320298, 315sqrtge0d 14007 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
321316, 316, 320, 320addge0d 10482 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
322294breq2d 4595 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
323316, 317subge0d 10496 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
324322, 323bitr3d 269 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
325321, 324mpbid 221 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
326317, 316, 325, 47syl3anc 1318 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
327319, 326eqtrd 2644 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
328 ax-resscn 9872 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
329328a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ℝ ⊆ ℂ)
330273, 271, 78syl2anc 691 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
331 rpcn 11717 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
332331sqcld 12868 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
333332adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
334330sselda 3568 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ)
335334recnd 9947 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ)
336331adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
337 rpne0 11724 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+𝑅 ≠ 0)
338337adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
339335, 336, 338divcld 10680 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ)
340 asincl 24400 . . . . . . . . . . . . . . . . 17 ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
341339, 340syl 17 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
342 1cnd 9935 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
343339sqcld 12868 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ)
344342, 343subcld 10271 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ)
345344sqrtcld 14024 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ)
346339, 345mulcld 9939 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈ ℂ)
347341, 346addcld 9938 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈ ℂ)
348333, 347mulcld 9939 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈ ℂ)
349 eqid 2610 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
350349tgioo2 22414 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
351 iccntr 22432 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
352273, 271, 351syl2anc 691 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
353329, 330, 348, 350, 349, 352dvmptntr 23540 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))))
354 areacirclem1 32670 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
355353, 354eqtrd 2644 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
356355adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
357 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2))
358357oveq2d 6565 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2)))
359358fveq2d 6107 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
360359oveq2d 6565 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
361360adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
362 simpr 476 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅))
363 ovex 6577 . . . . . . . . . . . 12 (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈ V
364363a1i 11 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈ V)
365356, 361, 362, 364fvmptd 6197 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
366158, 292sylan2 490 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
3673662timesd 11152 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
368365, 367eqtrd 2644 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
369294, 327, 3683eqtr4rd 2655 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
370286, 369eqtr4d 2647 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡))
371370itgeq2dv 23354 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡)
372271, 271, 302, 302addge0d 10482 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅 + 𝑅))
373331, 331subnegd 10278 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑅 − -𝑅) = (𝑅 + 𝑅))
374373breq2d 4595 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ 0 ≤ (𝑅 + 𝑅)))
375271, 273subge0d 10496 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ -𝑅𝑅))
376374, 375bitr3d 269 . . . . . . . 8 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 + 𝑅) ↔ -𝑅𝑅))
377372, 376mpbid 221 . . . . . . 7 (𝑅 ∈ ℝ+ → -𝑅𝑅)
378 2cn 10968 . . . . . . . . . . 11 2 ∈ ℂ
379163, 328sstri 3577 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ ℂ
380 ssid 3587 . . . . . . . . . . 11 ℂ ⊆ ℂ
381378, 379, 3803pm3.2i 1232 . . . . . . . . . 10 (2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ)
382 cncfmptc 22522 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
383381, 382mp1i 13 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
384 ioossicc 12130 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)
385 resmpt 5369 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))))
386384, 385ax-mp 5 . . . . . . . . . 10 ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))
387 areacirclem2 32671 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
388271, 302, 387syl2anc 691 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
389 rescncf 22508 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)))
390384, 388, 389mpsyl 66 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
391386, 390syl5eqelr 2693 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
392383, 391mulcncf 23023 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
393355, 392eqeltrd 2688 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
394384a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅))
395 ioombl 23140 . . . . . . . . . . 11 (-𝑅(,)𝑅) ∈ dom vol
396395a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ∈ dom vol)
397 ovex 6577 . . . . . . . . . . 11 (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈ V
398397a1i 11 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈ V)
399 areacirclem3 32672 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
400394, 396, 398, 399iblss 23377 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
401271, 302, 400syl2anc 691 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
402355, 401eqeltrd 2688 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ 𝐿1)
403 areacirclem4 32673 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
404273, 271, 377, 393, 402, 403ftc2nc 32664 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)))
405 eqidd 2611 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))
406 oveq1 6556 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅))
407406fveq2d 6107 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅)))
408406oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2))
409408oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2)))
410409fveq2d 6107 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((𝑅 / 𝑅)↑2))))
411406, 410oveq12d 6567 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))
412407, 411oveq12d 6567 . . . . . . . . . . . 12 (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))
413412oveq2d 6565 . . . . . . . . . . 11 (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
414413adantl 481 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
415 ubicc2 12160 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → 𝑅 ∈ (-𝑅[,]𝑅))
416274, 275, 377, 415syl3anc 1318 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ (-𝑅[,]𝑅))
417 ovex 6577 . . . . . . . . . . 11 ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V
418417a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V)
419405, 414, 416, 418fvmptd 6197 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
420331, 337dividd 10678 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) = 1)
421420fveq2d 6107 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (arcsin‘1))
422 asin1 24421 . . . . . . . . . . . . 13 (arcsin‘1) = (π / 2)
423421, 422syl6eq 2660 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (π / 2))
424420oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = (1↑2))
425 sq1 12820 . . . . . . . . . . . . . . . . . . 19 (1↑2) = 1
426424, 425syl6eq 2660 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = 1)
427426oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = (1 − 1))
428 1cnd 9935 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 1 ∈ ℂ)
429428subidd 10259 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − 1) = 0)
430427, 429eqtrd 2644 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = 0)
431430fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = (√‘0))
432431, 197syl6eq 2660 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0)
433432oveq2d 6565 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0))
434331, 331, 337divcld 10680 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) ∈ ℂ)
435434mul01d 10114 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · 0) = 0)
436433, 435eqtrd 2644 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = 0)
437423, 436oveq12d 6567 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) + 0))
438 2ne0 10990 . . . . . . . . . . . . . 14 2 ≠ 0
439255, 378, 438divcli 10646 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
440439a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (π / 2) ∈ ℂ)
441440addid1d 10115 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((π / 2) + 0) = (π / 2))
442437, 441eqtrd 2644 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2))
443442oveq2d 6565 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π / 2)))
444419, 443eqtrd 2644 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π / 2)))
445 oveq1 6556 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅))
446445fveq2d 6107 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅)))
447445oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2))
448447oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2)))
449448fveq2d 6107 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((-𝑅 / 𝑅)↑2))))
450445, 449oveq12d 6567 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))
451446, 450oveq12d 6567 . . . . . . . . . . . 12 (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
452451adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
453452oveq2d 6565 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
454 lbicc2 12159 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → -𝑅 ∈ (-𝑅[,]𝑅))
455274, 275, 377, 454syl3anc 1318 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → -𝑅 ∈ (-𝑅[,]𝑅))
456 ovex 6577 . . . . . . . . . . 11 ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) ∈ V
457456a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) ∈ V)
458405, 453, 455, 457fvmptd 6197 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
459331, 331, 337divnegd 10693 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = (-𝑅 / 𝑅))
460420negeqd 10154 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = -1)
461459, 460eqtr3d 2646 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) = -1)
462461fveq2d 6107 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = (arcsin‘-1))
463 ax-1cn 9873 . . . . . . . . . . . . . . 15 1 ∈ ℂ
464 asinneg 24413 . . . . . . . . . . . . . . 15 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
465463, 464ax-mp 5 . . . . . . . . . . . . . 14 (arcsin‘-1) = -(arcsin‘1)
466422negeqi 10153 . . . . . . . . . . . . . 14 -(arcsin‘1) = -(π / 2)
467465, 466eqtri 2632 . . . . . . . . . . . . 13 (arcsin‘-1) = -(π / 2)
468462, 467syl6eq 2660 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = -(π / 2))
469461oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = (-1↑2))
470 neg1sqe1 12821 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
471469, 470syl6eq 2660 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = 1)
472471oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = (1 − 1))
473472, 429eqtrd 2644 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = 0)
474473fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = (√‘0))
475474, 197syl6eq 2660 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0)
476475oveq2d 6565 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0))
477273recnd 9947 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℂ)
478477, 331, 337divcld 10680 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) ∈ ℂ)
479478mul01d 10114 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · 0) = 0)
480476, 479eqtrd 2644 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = 0)
481468, 480oveq12d 6567 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = (-(π / 2) + 0))
482439negcli 10228 . . . . . . . . . . . . 13 -(π / 2) ∈ ℂ
483482a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → -(π / 2) ∈ ℂ)
484483addid1d 10115 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (-(π / 2) + 0) = -(π / 2))
485481, 484eqtrd 2644 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = -(π / 2))
486485oveq2d 6565 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π / 2)))
487458, 486eqtrd 2644 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π / 2)))
488444, 487oveq12d 6567 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
489439, 439subnegi 10239 . . . . . . . . . . 11 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
490 pidiv2halves 24023 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
491489, 490eqtri 2632 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = π
492491a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((π / 2) − -(π / 2)) = π)
493492oveq2d 6565 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = ((𝑅↑2) · π))
494332, 440, 483subdid 10365 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
495255a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → π ∈ ℂ)
496332, 495mulcomd 9940 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · π) = (π · (𝑅↑2)))
497493, 494, 4963eqtr3d 2652 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π · (𝑅↑2)))
498488, 497eqtrd 2644 . . . . . 6 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2)))
499371, 404, 4983eqtrd 2648 . . . . 5 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
500268, 499syl 17 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
501261, 500pm2.61dane 2869 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
502162, 240, 5013eqtr3d 2652 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡 = (π · (𝑅↑2)))
503157, 502eqtrd 2644 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  {copab 4642  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  +crp 11708  (,)cioo 12046  [,]cicc 12049  cexp 12722  csqrt 13821  abscabs 13822  πcpi 14636  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  intcnt 20631  cnccncf 22487  vol*covol 23038  volcvol 23039  𝐿1cibl 23192  citg 23193   D cdv 23433  arcsincasin 24389  areacarea 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-asin 24392  df-area 24483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator