ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidif GIF version

Theorem unidif 3612
Description: If the difference 𝐴𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 3611 . . 3 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 𝐴 (𝐴𝐵))
2 difss 3070 . . . 4 (𝐴𝐵) ⊆ 𝐴
32unissi 3603 . . 3 (𝐴𝐵) ⊆ 𝐴
41, 3jctil 295 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 → ( (𝐴𝐵) ⊆ 𝐴 𝐴 (𝐴𝐵)))
5 eqss 2960 . 2 ( (𝐴𝐵) = 𝐴 ↔ ( (𝐴𝐵) ⊆ 𝐴 𝐴 (𝐴𝐵)))
64, 5sylibr 137 1 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wral 2306  wrex 2307  cdif 2914  wss 2917   cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-uni 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator