Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqr GIF version

Theorem sneqr 3531
 Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
sneqr ({𝐴} = {𝐵} → 𝐴 = 𝐵)

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . . . 4 𝐴 ∈ V
21snid 3402 . . 3 𝐴 ∈ {𝐴}
3 eleq2 2101 . . 3 ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵}))
42, 3mpbii 136 . 2 ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵})
51elsn 3391 . 2 (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)
64, 5sylib 127 1 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393  Vcvv 2557  {csn 3375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sn 3381 This theorem is referenced by:  sneqrg  3533  opth1  3973
 Copyright terms: Public domain W3C validator