![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setind | GIF version |
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 2934 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | |
2 | 1 | imbi1i 227 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
3 | 2 | albii 1359 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
4 | setindel 4263 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
5 | 3, 4 | sylbi 114 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 = wceq 1243 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-ral 2311 df-v 2559 df-in 2924 df-ss 2931 |
This theorem is referenced by: setind2 4265 |
Copyright terms: Public domain | W3C validator |