ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralun GIF version

Theorem ralun 3122
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 3121 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
21biimpri 124 1 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wral 2303  cun 2912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-v 2556  df-un 2919
This theorem is referenced by:  ac6sfi  6338
  Copyright terms: Public domain W3C validator