ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notrab GIF version

Theorem notrab 3214
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem notrab
StepHypRef Expression
1 difab 3206 . 2 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
2 difin 3174 . . 3 (𝐴 ∖ (𝐴 ∩ {𝑥𝜑})) = (𝐴 ∖ {𝑥𝜑})
3 dfrab3 3213 . . . 4 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
43difeq2i 3059 . . 3 (𝐴 ∖ {𝑥𝐴𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥𝜑}))
5 abid2 2158 . . . 4 {𝑥𝑥𝐴} = 𝐴
65difeq1i 3058 . . 3 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = (𝐴 ∖ {𝑥𝜑})
72, 4, 63eqtr4i 2070 . 2 (𝐴 ∖ {𝑥𝐴𝜑}) = ({𝑥𝑥𝐴} ∖ {𝑥𝜑})
8 df-rab 2315 . 2 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
91, 7, 83eqtr4i 2070 1 (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 97   = wceq 1243  wcel 1393  {cab 2026  {crab 2310  cdif 2914  cin 2916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-in 2924
This theorem is referenced by:  diffitest  6344
  Copyright terms: Public domain W3C validator