Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intv GIF version

Theorem intv 3923
 Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
intv V = ∅

Proof of Theorem intv
StepHypRef Expression
1 0ex 3884 . 2 ∅ ∈ V
2 int0el 3645 . 2 (∅ ∈ V → V = ∅)
31, 2ax-mp 7 1 V = ∅
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∈ wcel 1393  Vcvv 2557  ∅c0 3224  ∩ cint 3615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-nul 3883 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225  df-int 3616 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator