![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4905 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 259 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 dom cdm 4345 Fun wfun 4896 Fn wfn 4897 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 |
This theorem depends on definitions: df-bi 110 df-fn 4905 |
This theorem is referenced by: fnrel 4997 funfni 4999 fnco 5007 fnssresb 5011 ffun 5048 f1fun 5094 f1ofun 5128 fnbrfvb 5214 fvelimab 5229 fvun1 5239 elpreima 5286 respreima 5295 fconst3m 5380 fnfvima 5393 fnunirn 5406 f1eqcocnv 5431 fnexALT 5740 tfrlem4 5929 tfrlem5 5930 frecsuclem3 5990 fndmeng 6289 frecuzrdgcl 9199 frecuzrdg0 9200 frecuzrdgsuc 9201 shftfn 9425 |
Copyright terms: Public domain | W3C validator |