ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnexALT GIF version

Theorem fnexALT 5740
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 4983. This version of fnex 5383 uses ax-pow 3927 and ax-un 4170, whereas fnex 5383 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 4997 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 relssdmrn 4841 . . . 4 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 14 . . 3 (𝐹 Fn 𝐴𝐹 ⊆ (dom 𝐹 × ran 𝐹))
43adantr 261 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹))
5 fndm 4998 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65eleq1d 2106 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵𝐴𝐵))
76biimpar 281 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
8 fnfun 4996 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
9 funimaexg 4983 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
108, 9sylan 267 . . . 4 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐴) ∈ V)
11 imadmrn 4678 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
125imaeq2d 4668 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
1311, 12syl5eqr 2086 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹𝐴))
1413eleq1d 2106 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹𝐴) ∈ V))
1514biimpar 281 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝐴) ∈ V) → ran 𝐹 ∈ V)
1610, 15syldan 266 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → ran 𝐹 ∈ V)
17 xpexg 4452 . . 3 ((dom 𝐹𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V)
187, 16, 17syl2anc 391 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (dom 𝐹 × ran 𝐹) ∈ V)
19 ssexg 3896 . 2 ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V)
204, 18, 19syl2anc 391 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  Vcvv 2557  wss 2917   × cxp 4343  dom cdm 4345  ran crn 4346  cima 4348  Rel wrel 4350  Fun wfun 4896   Fn wfn 4897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator