ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Structured version   GIF version

Theorem fnrel 4940
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn A → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 4939 . 2 (𝐹 Fn A → Fun 𝐹)
2 funrel 4862 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn A → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4293  Fun wfun 4839   Fn wfn 4840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99
This theorem depends on definitions:  df-bi 110  df-fun 4847  df-fn 4848
This theorem is referenced by:  fnbr  4944  fnresdm  4951  fn0  4961  frel  4992  fcoi2  5014  f1rel  5038  f1ocnv  5082  dffn5im  5162  fnex  5326  fnexALT  5682
  Copyright terms: Public domain W3C validator