Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euanv | GIF version |
Description: Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
euanv | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1419 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | euan 1956 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∃!weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 |
This theorem is referenced by: eueq2dc 2714 fsn 5335 |
Copyright terms: Public domain | W3C validator |