ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabgf GIF version

Theorem elabgf 2685
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1 𝑥𝐴
elabgf.2 𝑥𝜓
elabgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabgf (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2 𝑥𝐴
2 nfab1 2180 . . . 4 𝑥{𝑥𝜑}
31, 2nfel 2186 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
4 elabgf.2 . . 3 𝑥𝜓
53, 4nfbi 1481 . 2 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 eleq1 2100 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
7 elabgf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
86, 7bibi12d 224 . 2 (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
9 abid 2028 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
101, 5, 8, 9vtoclgf 2612 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wnf 1349  wcel 1393  {cab 2026  wnfc 2165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559
This theorem is referenced by:  elabf  2686  elabg  2688  elab3gf  2692  elrabf  2696  bj-intabssel  9928
  Copyright terms: Public domain W3C validator