Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coeq2i | GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 4494 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∘ ccom 4349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-in 2924 df-ss 2931 df-br 3765 df-opab 3819 df-co 4354 |
This theorem is referenced by: coeq12i 4499 cocnvcnv2 4832 co01 4835 fcoi1 5070 dftpos2 5876 tposco 5890 |
Copyright terms: Public domain | W3C validator |