Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv Structured version   GIF version

Theorem bdcv 9283
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv BOUNDED x

Proof of Theorem bdcv
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 9256 . 2 BOUNDED y x
21bdelir 9282 1 BOUNDED x
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 9275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1335  ax-bdel 9256
This theorem depends on definitions:  df-bi 110  df-bdc 9276
This theorem is referenced by:  bdvsn  9309  bdcsuc  9315  bdeqsuc  9316  bj-inex  9338  bj-nntrans  9385  bj-omtrans  9390  bj-inf2vn  9404  bj-omex2  9407  bj-nn0sucALT  9408
  Copyright terms: Public domain W3C validator