![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version |
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcsuc | ⊢ BOUNDED suc 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcv 9968 | . . 3 ⊢ BOUNDED 𝑥 | |
2 | bdcsn 9990 | . . 3 ⊢ BOUNDED {𝑥} | |
3 | 1, 2 | bdcun 9982 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
4 | df-suc 4108 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
5 | 3, 4 | bdceqir 9964 | 1 ⊢ BOUNDED suc 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 2915 {csn 3375 suc csuc 4102 BOUNDED wbdc 9960 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 ax-bd0 9933 ax-bdor 9936 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 |
This theorem depends on definitions: df-bi 110 df-clab 2027 df-cleq 2033 df-clel 2036 df-un 2922 df-sn 3381 df-suc 4108 df-bdc 9961 |
This theorem is referenced by: bdeqsuc 10001 |
Copyright terms: Public domain | W3C validator |