ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancl Structured version   GIF version

Theorem ancl 301
Description: Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancl ((φψ) → (φ → (φ ψ)))

Proof of Theorem ancl
StepHypRef Expression
1 pm3.2 126 . 2 (φ → (ψ → (φ ψ)))
21a2i 11 1 ((φψ) → (φ → (φ ψ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  equs4  1610  eupickbi  1979
  Copyright terms: Public domain W3C validator