ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a2i Structured version   GIF version

Theorem a2i 11
Description: Inference derived from axiom ax-2 6. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a2i.1 (φ → (ψχ))
Assertion
Ref Expression
a2i ((φψ) → (φχ))

Proof of Theorem a2i
StepHypRef Expression
1 a2i.1 . 2 (φ → (ψχ))
2 ax-2 6 . 2 ((φ → (ψχ)) → ((φψ) → (φχ)))
31, 2ax-mp 7 1 ((φψ) → (φχ))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-2 6  ax-mp 7
This theorem is referenced by:  imim2i  12  mpd  13  sylcom  25  pm2.43  47  ancl  301  ancr  304  anc2r  311  pm2.65  572  pm2.18dc  738  con4biddc  742  hbim1  1440  sbcof2  1669  ralimia  2356  ceqsalg  2555  rspct  2622  elabgt  2657  fvmptt  5183  bj-exlimmp  7155  bj-rspgt  7171  bj-indint  7293
  Copyright terms: Public domain W3C validator