ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.2 GIF version

Theorem pm3.2 126
Description: Join antecedents with conjunction. Theorem *3.2 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) (Proof shortened by Jia Ming, 17-Nov-2020.)
Assertion
Ref Expression
pm3.2 (𝜑 → (𝜓 → (𝜑𝜓)))

Proof of Theorem pm3.2
StepHypRef Expression
1 ax-ia3 101 1 (𝜑 → (𝜓 → (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97
This theorem was proved from axioms:  ax-ia3 101
This theorem is referenced by:  pm3.21  251  pm3.2i  257  pm3.43i  258  ibar  285  jca  290  jcad  291  ancl  301  imnan  624  pm3.2an3  1083  19.29  1511  r19.26  2438  r19.29  2447  difrab  3208  dmcosseq  4564  lediv2a  7799  ssfzo12  9009  r19.29uz  9430
  Copyright terms: Public domain W3C validator