ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctird Structured version   GIF version

Theorem jctird 300
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctird.1 (φ → (ψχ))
jctird.2 (φθ)
Assertion
Ref Expression
jctird (φ → (ψ → (χ θ)))

Proof of Theorem jctird
StepHypRef Expression
1 jctird.1 . 2 (φ → (ψχ))
2 jctird.2 . . 3 (φθ)
32a1d 22 . 2 (φ → (ψθ))
41, 3jcad 291 1 (φ → (ψ → (χ θ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  anc2ri  313  ordunisuc2r  4189  fnun  4931  fco  4981
  Copyright terms: Public domain W3C validator