ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrot4 Unicode version

Theorem rexrot4 2476
Description: Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexrot4  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
Distinct variable groups:    z, w, A   
w, B, z    x, w, y, C    x, z, D, y
Allowed substitution hints:    ph( x, y, z, w)    A( x, y)    B( x, y)    C( z)    D( w)

Proof of Theorem rexrot4
StepHypRef Expression
1 rexcom13 2475 . . 3  |-  ( E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. w  e.  D  E. z  e.  C  E. y  e.  B  ph )
21rexbii 2331 . 2  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. x  e.  A  E. w  e.  D  E. z  e.  C  E. y  e.  B  ph )
3 rexcom13 2475 . 2  |-  ( E. x  e.  A  E. w  e.  D  E. z  e.  C  E. y  e.  B  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
42, 3bitri 173 1  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   E.wrex 2307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator