ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfs1f Structured version   Unicode version

Theorem nfs1f 1660
Description: If is not free in , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1f.1  F/
Assertion
Ref Expression
nfs1f  F/

Proof of Theorem nfs1f
StepHypRef Expression
1 nfs1f.1 . . . 4  F/
21nfri 1409 . . 3
32sbh 1656 . 2
43, 1nfxfr 1360 1  F/
Colors of variables: wff set class
Syntax hints:   F/wnf 1346  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator