Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaval Unicode version

Theorem iotaval 4878
 Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem iotaval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 4868 . 2
2 vex 2560 . . . . . . 7
3 sbeqalb 2815 . . . . . . . 8
4 equcomi 1592 . . . . . . . 8
53, 4syl6 29 . . . . . . 7
62, 5ax-mp 7 . . . . . 6
76ex 108 . . . . 5
8 equequ2 1599 . . . . . . . . . 10
98equcoms 1594 . . . . . . . . 9
109bibi2d 221 . . . . . . . 8
1110biimpd 132 . . . . . . 7
1211alimdv 1759 . . . . . 6
1312com12 27 . . . . 5
147, 13impbid 120 . . . 4
1514alrimiv 1754 . . 3
16 uniabio 4877 . . 3
1715, 16syl 14 . 2
181, 17syl5eq 2084 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241   wceq 1243   wcel 1393  cab 2026  cvv 2557  cuni 3580  cio 4865 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-sn 3381  df-pr 3382  df-uni 3581  df-iota 4867 This theorem is referenced by:  iotauni  4879  iota1  4881  euiotaex  4883  iota4  4885  iota5  4887
 Copyright terms: Public domain W3C validator