ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbi Unicode version

Theorem exbi 1495
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
exbi  |-  ( A. x ( ph  <->  ps )  ->  ( E. x ph  <->  E. x ps ) )

Proof of Theorem exbi
StepHypRef Expression
1 bi1 111 . . . 4  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
21alimi 1344 . . 3  |-  ( A. x ( ph  <->  ps )  ->  A. x ( ph  ->  ps ) )
3 exim 1490 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )
42, 3syl 14 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( E. x ph  ->  E. x ps )
)
5 bi2 121 . . . 4  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
65alimi 1344 . . 3  |-  ( A. x ( ph  <->  ps )  ->  A. x ( ps 
->  ph ) )
7 exim 1490 . . 3  |-  ( A. x ( ps  ->  ph )  ->  ( E. x ps  ->  E. x ph ) )
86, 7syl 14 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( E. x ps 
->  E. x ph )
)
94, 8impbid 120 1  |-  ( A. x ( ph  <->  ps )  ->  ( E. x ph  <->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  exbii  1496  exbidh  1505  exintrbi  1524  19.19  1556  rexrnmpt  5310
  Copyright terms: Public domain W3C validator