ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.19 Unicode version

Theorem 19.19 1556
Description: Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.19.1  |-  F/ x ph
Assertion
Ref Expression
19.19  |-  ( A. x ( ph  <->  ps )  ->  ( ph  <->  E. x ps ) )

Proof of Theorem 19.19
StepHypRef Expression
1 19.19.1 . . 3  |-  F/ x ph
2119.9 1535 . 2  |-  ( E. x ph  <->  ph )
3 exbi 1495 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( E. x ph  <->  E. x ps ) )
42, 3syl5bbr 183 1  |-  ( A. x ( ph  <->  ps )  ->  ( ph  <->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241   F/wnf 1349   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-nf 1350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator