ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euim Unicode version

Theorem euim 1968
Description: Add existential uniqueness quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
euim  |-  ( ( E. x ph  /\  A. x ( ph  ->  ps ) )  ->  ( E! x ps  ->  E! x ph ) )

Proof of Theorem euim
StepHypRef Expression
1 ax-1 5 . . 3  |-  ( E. x ph  ->  ( E! x ps  ->  E. x ph ) )
2 euimmo 1967 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( E! x ps  ->  E* x ph ) )
31, 2anim12ii 325 . 2  |-  ( ( E. x ph  /\  A. x ( ph  ->  ps ) )  ->  ( E! x ps  ->  ( E. x ph  /\  E* x ph ) ) )
4 eu5 1947 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
53, 4syl6ibr 151 1  |-  ( ( E. x ph  /\  A. x ( ph  ->  ps ) )  ->  ( E! x ps  ->  E! x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241   E.wex 1381   E!weu 1900   E*wmo 1901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator