Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  euf Unicode version

Theorem euf 1905
 Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
euf.1
Assertion
Ref Expression
euf
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem euf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 1903 . 2
2 euf.1 . . . . 5
3 ax-17 1419 . . . . 5
42, 3hbbi 1440 . . . 4
54hbal 1366 . . 3
6 ax-17 1419 . . 3
7 equequ2 1599 . . . . 5
87bibi2d 221 . . . 4
98albidv 1705 . . 3
105, 6, 9cbvexh 1638 . 2
111, 10bitri 173 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1241  wex 1381  weu 1900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-eu 1903 This theorem is referenced by:  eu1  1925  eumo0  1931
 Copyright terms: Public domain W3C validator