Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euf | Unicode version |
Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
euf.1 |
Ref | Expression |
---|---|
euf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 1903 | . 2 | |
2 | euf.1 | . . . . 5 | |
3 | ax-17 1419 | . . . . 5 | |
4 | 2, 3 | hbbi 1440 | . . . 4 |
5 | 4 | hbal 1366 | . . 3 |
6 | ax-17 1419 | . . 3 | |
7 | equequ2 1599 | . . . . 5 | |
8 | 7 | bibi2d 221 | . . . 4 |
9 | 8 | albidv 1705 | . . 3 |
10 | 5, 6, 9 | cbvexh 1638 | . 2 |
11 | 1, 10 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wex 1381 weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-eu 1903 |
This theorem is referenced by: eu1 1925 eumo0 1931 |
Copyright terms: Public domain | W3C validator |