ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbal Structured version   Unicode version

Theorem hbal 1363
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1
Assertion
Ref Expression
hbal

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3
21alimi 1341 . 2
3 ax-7 1334 . 2
42, 3syl 14 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1333  ax-7 1334  ax-gen 1335
This theorem is referenced by:  hba2  1440  nfal  1465  aaanh  1475  hbex  1524  pm11.53  1772  euf  1902  hbral  2347
  Copyright terms: Public domain W3C validator