ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3h Structured version   Unicode version

Theorem eu3h 1923
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
Hypothesis
Ref Expression
eu3h.1
Assertion
Ref Expression
eu3h
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem eu3h
StepHypRef Expression
1 euex 1908 . . 3
2 eu3h.1 . . . 4
32eumo0 1909 . . 3
41, 3jca 290 . 2
52nfi 1327 . . . . 5  F/
65mo23 1919 . . . 4
76anim2i 324 . . 3
85eu2 1922 . . 3
97, 8sylibr 137 . 2
104, 9impbii 117 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  wal 1224  wex 1358  wsb 1623  weu 1878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406
This theorem depends on definitions:  df-bi 110  df-nf 1326  df-sb 1624  df-eu 1881
This theorem is referenced by:  eu3  1924  mo2r  1930  2eu4  1971
  Copyright terms: Public domain W3C validator