Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf2 Unicode version

Theorem elabgf2 9919
 Description: One implication of elabgf 2685. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf2.nf1
elabgf2.nf2
elabgf2.1
Assertion
Ref Expression
elabgf2

Proof of Theorem elabgf2
StepHypRef Expression
1 elabgf2.nf1 . 2
2 elabgf2.nf2 . . 3
3 nfab1 2180 . . . 4
41, 3nfel 2186 . . 3
52, 4nfim 1464 . 2
6 elabgf0 9916 . 2
7 bicom1 122 . . 3
8 elabgf2.1 . . . 4
9 bi1 111 . . . 4
108, 9syl9 66 . . 3
117, 10syl5 28 . 2
121, 5, 6, 11bj-vtoclgf 9915 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243  wnf 1349   wcel 1393  cab 2026  wnfc 2165 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559 This theorem is referenced by:  elabf2  9921  elabg2  9924  bj-intabssel1  9929
 Copyright terms: Public domain W3C validator