Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfint2 | Unicode version |
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfint2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 3616 | . 2 | |
2 | df-ral 2311 | . . 3 | |
3 | 2 | abbii 2153 | . 2 |
4 | 1, 3 | eqtr4i 2063 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1241 wceq 1243 wcel 1393 cab 2026 wral 2306 cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-ral 2311 df-int 3616 |
This theorem is referenced by: inteq 3618 nfint 3625 intiin 3711 |
Copyright terms: Public domain | W3C validator |