Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbiebg | Unicode version |
Description: Bidirectional conversion between an implicit class substitution hypothesis and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
csbiebg.2 |
Ref | Expression |
---|---|
csbiebg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2049 | . . . 4 | |
2 | 1 | imbi1d 220 | . . 3 |
3 | 2 | albidv 1705 | . 2 |
4 | csbeq1 2855 | . . 3 | |
5 | 4 | eqeq1d 2048 | . 2 |
6 | vex 2560 | . . 3 | |
7 | csbiebg.2 | . . 3 | |
8 | 6, 7 | csbieb 2888 | . 2 |
9 | 3, 5, 8 | vtoclbg 2614 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wceq 1243 wcel 1393 wnfc 2165 csb 2852 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sbc 2765 df-csb 2853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |