ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1i Unicode version

Theorem abeq1i 2149
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 31-Jul-1994.)
Hypothesis
Ref Expression
abeqri.1  |-  { x  |  ph }  =  A
Assertion
Ref Expression
abeq1i  |-  ( ph  <->  x  e.  A )

Proof of Theorem abeq1i
StepHypRef Expression
1 abid 2028 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
2 abeqri.1 . . 3  |-  { x  |  ph }  =  A
32eleq2i 2104 . 2  |-  ( x  e.  { x  | 
ph }  <->  x  e.  A )
41, 3bitr3i 175 1  |-  ( ph  <->  x  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    = wceq 1243    e. wcel 1393   {cab 2026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator