Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq1i | GIF version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 31-Jul-1994.) |
Ref | Expression |
---|---|
abeqri.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
Ref | Expression |
---|---|
abeq1i | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2028 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | abeqri.1 | . . 3 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
3 | 2 | eleq2i 2104 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ 𝐴) |
4 | 1, 3 | bitr3i 175 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 = wceq 1243 ∈ wcel 1393 {cab 2026 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |