ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.37-1 Structured version   Unicode version

Theorem 19.37-1 1546
Description: One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.)
Hypothesis
Ref Expression
19.37-1.1  F/
Assertion
Ref Expression
19.37-1

Proof of Theorem 19.37-1
StepHypRef Expression
1 19.37-1.1 . . 3  F/
2119.3 1428 . 2
3 19.35-1 1497 . 2
42, 3syl5bir 142 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1226   F/wnf 1329  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409
This theorem depends on definitions:  df-bi 110  df-nf 1330
This theorem is referenced by:  19.37aiv  1547  spcimegft  2608  eqvincg  2645
  Copyright terms: Public domain W3C validator