ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.35-1 Structured version   Unicode version

Theorem 19.35-1 1512
Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic (Contributed by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.35-1

Proof of Theorem 19.35-1
StepHypRef Expression
1 19.29 1508 . . 3
2 pm3.35 329 . . . 4
32eximi 1488 . . 3
41, 3syl 14 . 2
54expcom 109 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  19.35i  1513  19.25  1514  19.36-1  1560  19.37-1  1561  spimt  1621  sbequi  1717
  Copyright terms: Public domain W3C validator