ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.25 Unicode version

Theorem 19.25 1517
Description: Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Assertion
Ref Expression
19.25  |-  ( A. y E. x ( ph  ->  ps )  ->  ( E. y A. x ph  ->  E. y E. x ps ) )

Proof of Theorem 19.25
StepHypRef Expression
1 19.35-1 1515 . . 3  |-  ( E. x ( ph  ->  ps )  ->  ( A. x ph  ->  E. x ps ) )
21alimi 1344 . 2  |-  ( A. y E. x ( ph  ->  ps )  ->  A. y
( A. x ph  ->  E. x ps )
)
3 exim 1490 . 2  |-  ( A. y ( A. x ph  ->  E. x ps )  ->  ( E. y A. x ph  ->  E. y E. x ps ) )
42, 3syl 14 1  |-  ( A. y E. x ( ph  ->  ps )  ->  ( E. y A. x ph  ->  E. y E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1241   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator