Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vnex Structured version   GIF version

Theorem vnex 3864
 Description: The universal class does not exist. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex ¬ x x = V

Proof of Theorem vnex
StepHypRef Expression
1 vprc 3862 . 2 ¬ V V
2 isset 2539 . 2 (V V ↔ x x = V)
31, 2mtbi 582 1 ¬ x x = V
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   = wceq 1228  ∃wex 1362   ∈ wcel 1374  Vcvv 2535 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-4 1381  ax-13 1385  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-ext 2004  ax-sep 3849 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-v 2537 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator