Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnf | GIF version |
Description: Version of ax-strcoll 10107 with one DV condition removed, the other DV condition replaced by a non-freeness hypothesis, and without initial universal quantifier. (Contributed by BJ, 21-Oct-2019.) |
Ref | Expression |
---|---|
strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
strcollnf | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strcollnft 10109 | . 2 ⊢ (∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) | |
2 | strcollnf.nf | . . 3 ⊢ Ⅎ𝑏𝜑 | |
3 | 2 | ax-gen 1338 | . 2 ⊢ ∀𝑦Ⅎ𝑏𝜑 |
4 | 1, 3 | mpg 1340 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 Ⅎwnf 1349 ∃wex 1381 ∀wral 2306 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-strcoll 10107 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |